10,586 research outputs found

    Economic Incentives Versus Command and Control: What's the Best Approach for Solving Environmental Problems?

    Get PDF
    Now, decades after the first environmental laws were passed in this country, policymakers face many choices when seeking to solve environmental problems. Will taxing polluters for their discharges be more effective than fining them for not meeting certain emissions standards? Will a regulatory agency find it less costly to enforce a ban or oversee a system of tradable permits? Which strategy will reduce a pollutant the quickest? Clearly, there are no "one-size-fits-all" answers. Many factors enter into the decision to favor either policies that lean more toward economic incentives (EI) and toward direct regulation, commonly referred to as command-and-control (CAC) policy. Underlying determinants include a country's governmental and regulatory infrastructure, along with the nature of the environmental problem itself. Even with these contextual factors to consider, we thought it would be useful to compare EI and CAC policies and their outcomes in a real-world setting. To do this, we looked at six environmental problems that the United States and at least one European country dealt with differently (see box on page 14.) For each problem, one approach was more of an EI measure, while the other relied more on CAC. For example, to reduce point-source industrial water pollution, the Netherlands implemented a system of fees for organic pollutants (EI), while the United States established a system of guidelines and permits (CAC). It turned out, in fact, that most policies had at least some elements of both approaches, but we categorized them as EI or CAC based on their dominant features. We then asked researchers who had previously studied these policies on either side of the Atlantic to update or prepare new case studies. We analyzed the 12 case studies (two for each of the six environmental problems) against a list of hypotheses frequently made for or against EI and CAC, such as which instrument is more effective or imposes less administrative burden

    The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope

    Get PDF
    We designed, built, and calibrated a new spectropolarimeter for the HiVIS spectrograph (R 12000-49000) on the AEOS telescope. We also did a polarization calibration of the telescope and instrument. We will introduce the design and use of the spectropolarimeter as well as a new data reduction package we have developed, then discuss the polarization calibration of the spectropolarimeter and the AEOS telescope. We used observations of unpolarized standard stars at many pointings to measure the telescope induced polarization and compare it with a Zemax model. The telescope induces polarization of 1-6% with a strong variation with wavelength and pointing, consistent with the altitude and azimuth variation expected. We then used scattered sunlight as a linearly polarized source to measure the telescopes spectropolarimetric response to linearly polarized light. We then made an all-sky map of the telescope's polarization response to calibrate future spectropolarimetry.Comment: PASP 118, June 200

    Fault-tolerant quantum computation with high threshold in two dimensions

    Get PDF
    We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors.Comment: 4 pages, 4 figures; v2: A single 2D layer of qubits (simple square lattice) with nearest-neighbor translation-invariant Ising interaction suffices. Slightly improved threshol

    Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry

    Get PDF
    In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.Comment: Submitted to Physical Review B, 23 page

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials
    • …
    corecore