254 research outputs found
The Extremely Metal-Poor, Neutron-Capture-Rich Star CS 22892-052: A Comprehensive Abundance Analysis
High-resolution spectra obtained with three ground-based facilities and the
Hubble Space Telescope (HST) have been combined to produce a new abundance
analysis of CS 22892-052, an extremely metal-poor giant with large relative
enhancements of neutron-capture elements. A revised model stellar atmosphere
has been derived with the aid of a large number of Fe-peak transitions,
including both neutral and ionized species of six elements.Several elements,
including Mo, Lu, Au, Pt and Pb, have been detected for the first time in CS
22892-052, and significant upper limits have been placed on the abundances of
Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper
limits have been determined for 57 elements, far more than previously possible.
New Be and Li detections in CS 22892-052 indicate that the abundances of both
these elements are significantly depleted compared to unevolved main-sequence
turnoff stars of similar metallicity. Abundance comparisons show an excellent
agreement between the heaviest n-capture elements (Z >= 56) and scaled solar
system r-process abundances, confirming earlier results for CS 22892-052 and
other metal-poor stars. New theoretical r-process calculations also show good
agreement with CS 22892-052 abundances as well as the solar r-process abundance
components.The abundances of lighter elements (40<= Z <= 50), however, deviate
from the same scaled abundance curves that match the heavier elements,
suggesting different synthesis conditions or sites for the low-mass and
high-mass ends of the abundance distribution. The detection of Th and the upper
limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of
CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8 +/- ~= 3
Gyr. An average of several chronometric ratios yields an age 14.2 +/- ~= 3 Gyr.Comment: 65 pages, 8 figures, 10 tables; To appear in the Astrophysical
Journa
Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AIDâMediated Mutagenesis
Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substratesâwhich we found to be unique to actively transcribed genesâas short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID
Technology-Enabled Remote Monitoring and Self-Management - Vision for Patient Empowerment Following Cardiac and Vascular Surgery: User Testing and Randomized Controlled Trial Protocol.
BACKGROUND: Tens of thousands of cardiac and vascular surgeries (CaVS) are performed on seniors in Canada and the United Kingdom each year to improve survival, relieve disease symptoms, and improve health-related quality of life (HRQL). However, chronic postsurgical pain (CPSP), undetected or delayed detection of hemodynamic compromise, complications, and related poor functional status are major problems for substantial numbers of patients during the recovery process. To tackle this problem, we aim to refine and test the effectiveness of an eHealth-enabled service delivery intervention, TecHnology-Enabled remote monitoring and Self-MAnagemenT-VIsion for patient EmpoWerment following Cardiac and VasculaR surgery (THE SMArTVIEW, CoVeRed), which combines remote monitoring, education, and self-management training to optimize recovery outcomes and experience of seniors undergoing CaVS in Canada and the United Kingdom. OBJECTIVE: Our objectives are to (1) refine SMArTVIEW via high-fidelity user testing and (2) examine the effectiveness of SMArTVIEW via a randomized controlled trial (RCT). METHODS: CaVS patients and clinicians will engage in two cycles of focus groups and usability testing at each site; feedback will be elicited about expectations and experience of SMArTVIEW, in context. The data will be used to refine the SMArTVIEW eHealth delivery program. Upon transfer to the surgical ward (ie, post-intensive care unit [ICU]), 256 CaVS patients will be reassessed postoperatively and randomly allocated via an interactive Web randomization system to the intervention group or usual care. The SMArTVIEW intervention will run from surgical ward day 2 until 8 weeks following surgery. Outcome assessments will occur on postoperative day 30; at week 8; and at 3, 6, 9, and 12 months. The primary outcome is worst postop pain intensity upon movement in the previous 24 hours (Brief Pain Inventory-Short Form), averaged across the previous 14 days. Secondary outcomes include a composite of postoperative complications related to hemodynamic compromise-death, myocardial infarction, and nonfatal stroke- all-cause mortality and surgical site infections, functional status (Medical Outcomes Study Short Form-12), depressive symptoms (Geriatric Depression Scale), health service utilization-related costs (health service utilization data from the Institute for Clinical Evaluative Sciences data repository), and patient-level cost of recovery (Ambulatory Home Care Record). A linear mixed model will be used to assess the effects of the intervention on the primary outcome, with an a priori contrast of weekly average worst pain intensity upon movement to evaluate the primary endpoint of pain at 8 weeks postoperation. We will also examine the incremental cost of the intervention compared to usual care using a regression model to estimate the difference in expected health care costs between groups. RESULTS: Study start-up is underway and usability testing is scheduled to begin in the fall of 2016. CONCLUSIONS: Given our experience, dedicated industry partners, and related RCT infrastructure, we are confident we can make a lasting contribution to improving the care of seniors who undergo CaVS
Consensus Recommendations for Clinical Outcome Assessments and Registry Development in Ataxias: Ataxia Global Initiative (AGI) Working Group Expert Guidance
To accelerate and facilitate clinical trials, the Ataxia Global Initiative (AGI) was established as a worldwide research platform for trial readiness in ataxias. One of AGIâs major goals is the harmonization and standardization of outcome assessments. Clinical outcome assessments (COAs) that describe or reflect how a patient feels or functions are indispensable for clinical trials, but similarly important for observational studies and in routine patient care. The AGI working group on COAs has defined a set of data including a graded catalog of COAs that are recommended as a standard for future assessment and sharing of clinical data and joint clinical studies. Two datasets were defined: a mandatory dataset (minimal dataset) that can ideally be obtained during a routine clinical consultation and a more demanding extended dataset that is useful for research purposes. In the future, the currently most widely used clinician-reported outcome measure (ClinRO) in ataxia, the scale for the assessment and rating of ataxia (SARA), should be developed into a generally accepted instrument that can be used in upcoming clinical trials. Furthermore, there is an urgent need (i) to obtain more data on ataxia-specific, patient-reported outcome measures (PROs), (ii) to demonstrate and optimize sensitivity to change of many COAs, and (iii) to establish methods and evidence of anchoring change in COAs in patient meaningfulness, e.g., by determining patient-derived minimally meaningful thresholds of change
Recommendations for Enhancing Psychosocial Support of NICU Parents through Staff Education and Support
Providing psychosocial support to parents whose infants are hospitalized in the neonatal intensive care unit (NICU) can improve parentsâ functioning as well as their relationships with their babies. Yet, few NICUs offer staff education that teaches optimal methods of communication with parents in distress. Limited staff education in how to best provide psychosocial support to families is one factor that may render those who work in the NICU at risk for burnout, compassion fatigue and secondary traumatic stress syndrome. Staff who develop burnout may have further reduced ability to provide effective support to parents and babies. Recommendations for providing NICU staff with education and support are discussed. The goal is to deliver care that exemplifies the belief that providing psychosocial care and support to the family is equal in importance to providing medical care and developmental support to the baby
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5â7.5Ă10 cms. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000â4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13â14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Î cells. Hence, we conclude that CEB1 instability in pif1Î cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences
- âŠ