262 research outputs found

    Surface states in nearly modulated systems

    Full text link
    A Landau model is used to study the phase behavior of the surface layer for magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz point marking the boundary between modulated and homogeneous bulk phases. The model incorporates surface and bulk fields and includes a term in the free energy proportional to the square of the second derivative of the order parameter in addition to the usual term involving the square of the first derivative. In the limit of vanishing bulk field, three distinct types of surface ordering are possible: a wetting layer, a non-wet layer having a small deviation from bulk order, and a different non-wet layer with a large deviation from bulk order which decays non-monotonically as distance from the wall increases. In particular the large deviation non-wet layer is a feature of systems at the Lifshitz point and also those having only homogeneous bulk phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Strong Enhancement of Superconducting Correlation in a Two-Component Fermion Gas

    Full text link
    We study high-density electron-hole (e-h) systems with the electron density slightly larger than the hole density. We find a new superconducting phase, in which the excess electrons form Cooper pairs moving in an e-h BCS phase. The coexistence of the e-h and e-e orders is possible because e and h have opposite charges, whereas analogous phases are impossible in the case of two fermion species that have the same charge or are neutral. Most strikingly, the e-h order enhances the superconducting e-h order parameter by more than one order of magnitude as compared with that given by the BCS formula, for the same value of the effective e-e attractive potential \lambda^{ee}. This new phase should be observable in an e-h system created by photoexcitation in doped semiconductors at low temperatures.Comment: 5 pages including 5 PostScript figure

    Second harmonic light scattering induced by defects in the twist-bend nematic phase of liquid crystal dimers

    Get PDF
    The nematic twist-bend (NTB) phase, exhibited by certain thermotropic liquid crystalline (LC) dimers, represents a new orientationally ordered mesophase -- the first distinct nematic variant discovered in many years. The NTB phase is distinguished by a heliconical winding of the average molecular long axis (director) with a remarkably short (nanoscale) pitch and, in systems of achiral dimers, with an equal probability to form right- and left-handed domains. The NTB structure thus provides another fascinating example of spontaneous chiral symmetry breaking in nature. The order parameter driving the formation of the heliconical state has been theoretically conjectured to be a polarization field, deriving from the bent conformation of the dimers, that rotates helically with the same nanoscale pitch as the director field. It therefore presents a significant challenge for experimental detection. Here we report a second harmonic light scattering (SHLS) study on two achiral, NTB-forming LCs, which is sensitive to the polarization field due to micron-scale distortion of the helical structure associated with naturally-occurring textural defects. These defects are parabolic focal conics of smectic-like ``pseudo-layers", defined by planes of equivalent phase in a coarse-grained description of the NTB state. Our SHLS data are explained by a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a linear coupling between the two

    Light scattering study of the “pseudo-layer” compression elastic constant in a twist-bend nematic liquid crystal

    Get PDF
    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or “pseudo-layers”, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining “layer” compression and bending ought to be characterized by an effective layer compression elastic constant Beff and average director splay constant Keff1. The magnitude of Keff1 is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, Beff could differ substantially from the typical value of ∼10⁶ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the “pseudo-layer” structure of the TB phase with Beff in the range 10³–10⁴ Pa. We show additionally that the temperature dependence of Beff at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director

    Electronic properties of metal induced gap states at insulator/metal interfaces -- dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    Full text link
    Motivated from the experimental observation of metal induced gap states (MIGS) at insulator/metal interfaces by Kiguchi {\it et al.} [Phys. Rev. Lett. {\bf 90}, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density functional method. We have found that, on top of the usual evanescent state, MIGS generally have a long tail on halogen sites with a pzp_z-like character, whose penetration depth (λ\lambda) is as large as half the lattice constant of bulk alkali halides. This implies that λ\lambda, while little dependent on the carrier density in the jellium, is dominated by the lattice constant (hence by energy gap) of the alkali halide, where λLiF<λLiCl<λLiI\lambda_{\rm LiF} < \lambda_{\rm LiCl} < \lambda_{\rm LiI}. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity.Comment: 7 pages, 9 figure

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    Microscopic theory of the pseudogap and Peierls transition in quasi-one-dimensional materials

    Get PDF
    The problem of deriving from microscopic theory a Ginzburg-Landau free energy functional to describe the Peierls or charge-density-wave transition in quasi-one-dimensional materials is considered. Particular attention is given to how the thermal lattice motion affects the electronic states. Near the transition temperature the thermal lattice motion produces a pseudogap in the density of states at the Fermi level. Perturbation theory diverges and the traditional quasi-particle or Fermi liquid picture breaks down. The pseudogap causes a significant modification of the coefficients in the Ginzburg-Landau functional from their values in the rigid lattice approximation, which neglects the effect of the thermal lattice motion. To appear in Physical Review B.Comment: 21 pages, RevTeX, 5 figures in uuencoded compressed tar fil

    Stripes, Vibrations and Superconductivity

    Full text link
    We propose a model of a spatially modulated collective charge state of superconducting cuprates. The regions of higher carrier density (stripes) are described in terms of Luttinger liquids and the regions of lower density as a two-dimensional interacting bosonic gas of d_{x^2-y^2} hole pairs. The interactions among the elementary excitations are repulsive and the transition to the superconducting state is driven by decay processes. Vibrations of the CCS and the lattice, although not participating directly in the binding mechanism, are fundamental for superconductivity. The superfluid density and the lattice have a strong tendency to modulation implying a still unobserved dimerized stripe phase in cuprates. The phase diagram of the model has a crossover from 1D to 2D behavior and a pseudogap region where the amplitude of the order parameters are finite but phase coherence is not established. We discuss the nature of the spin fluctuations and the unusual isotope effect within the model.Comment: 51 pages, 20 figures. Post-March Meeting version: New references are added, some of the typos are corrected, and a few new discussions are include
    corecore