294 research outputs found

    Public Information and Inefficient Investment

    Get PDF
    In a general equilibrium economy with uninsurable aggregate liquidity shocks, we show that public information may trigger allocative inefficiency and liquidity crises. Entrepreneurs do not internalize the negative impact of their investment decisions on the equilibrium risk of liquidity shortage. A more informative public signal decreases the risk of a liquidity shock, but increases the risk of capital rationing conditional on a liquidity shock. In equilibrium, information quality has a non-monotonic effect on expected returns on investment and social welfare. An increase in the quality of public information has redistributive effects on welfare as entrepreneurs gain and financiers lose. Investment restrictions and targeted disclosure of information achieve constrained efficiency as competitive market equilibrium

    Myeloid Diagnostic and Prognostic Markers of Immune Suppression in the Blood of Glioma Patients.

    Get PDF
    Although gliomas are confined to the central nervous system, their negative influence over the immune system extends to peripheral circulation. The immune suppression exerted by myeloid cells can affect both response to therapy and disease outcome. We analyzed the expansion of several myeloid parameters in the blood of low- and high-grade gliomas and assessed their relevance as biomarkers of disease and clinical outcome. Methods: Peripheral blood was obtained from 134 low- and high-grade glioma patients. CD14+, CD14+/p-STAT3+, CD14+/PD-L1+, CD15+ cells and four myeloid-derived suppressor cell (MDSC) subsets, were evaluated by flow cytometry. Arginase-1 (ARG1) quantity and activity was determined in the plasma. Multivariable logistic regression model was used to obtain a diagnostic score to discriminate glioma patients from healthy controls and between each glioma grade. A glioblastoma prognostic model was determined by multiple Cox regression using clinical and myeloid parameters. Results: Changes in myeloid parameters associated with immune suppression allowed to define a diagnostic score calculating the risk of being a glioma patient. The same parameters, together with age, permit to calculate the risk score in differentiating each glioma grade. A prognostic model for glioblastoma patients stemmed out from a Cox multiple analysis, highlighting the role of MDSC, p-STAT3, and ARG1 activity together with clinical parameters in predicting patient's outcome. Conclusions: This work emphasizes the role of systemic immune suppression carried out by myeloid cells in gliomas. The identification of biomarkers associated with immune landscape, diagnosis, and outcome of glioblastoma patients lays the ground for their clinical use

    Radical anti-realism and substructural logics

    No full text
    We first provide the outline of an argument in favour of a radical form of anti-realism premised on the need to comply with two principles, implicitness and immanence, when trying to frame assertability-conditions. It follows from the first principle that one ought to avoid explicit bounding of the length of computations, as is the case for some strict finitists, and look for structural weakening instead. In order to comply with the principle of immanence, one ought to take into account the difference between being able to recognize a proof when presented with one and being able to produce one and thus avoid the idealization of our cognitive capacities that arise within Hilbert-style calculi. We then explore the possibility of weakening structural rules in order to comply with radical anti-realist strictures

    SARS-CoV-2 Breakthrough Infections: Incidence and Risk Factors in a Large European Multicentric Cohort of Health Workers.

    Get PDF
    Background: The research aimed to investigate the incidence of SARS-CoV-2 breakthrough infections and their determinants in a large European cohort of more than 60,000 health workers. Methods: A multicentric retrospective cohort study, involving 12 European centers, was carried out within the ORCHESTRA project, collecting data up to 18 November 2021 on fully vaccinated health workers. The cumulative incidence of SARS-CoV-2 breakthrough infections was investigated with its association with occupational and social-demographic characteristics (age, sex, job title, previous SARS-CoV-2 infection, antibody titer levels, and time from the vaccination course completion). Results: Among 64,172 health workers from 12 European health centers, 797 breakthrough infections were observed (cumulative incidence of 1.2%). The primary analysis using individual data on 8 out of 12 centers showed that age and previous infection significantly modified breakthrough infection rates. In the meta-analysis of aggregated data from all centers, previous SARS-CoV-2 infection and the standardized antibody titer were inversely related to the risk of breakthrough infection (p = 0.008 and p = 0.007, respectively). Conclusion: The inverse correlation of antibody titer with the risk of breakthrough infection supports the evidence that vaccination plays a primary role in infection prevention, especially in health workers. Cellular immunity, previous clinical conditions, and vaccination timing should be further investigated

    Rise and Demise of Bioinformatics? Promise and Progress

    Get PDF
    The field of bioinformatics and computational biology has gone through a number of transformations during the past 15 years, establishing itself as a key component of new biology. This spectacular growth has been challenged by a number of disruptive changes in science and technology. Despite the apparent fatigue of the linguistic use of the term itself, bioinformatics has grown perhaps to a point beyond recognition. We explore both historical aspects and future trends and argue that as the field expands, key questions remain unanswered and acquire new meaning while at the same time the range of applications is widening to cover an ever increasing number of biological disciplines. These trends appear to be pointing to a redefinition of certain objectives, milestones, and possibly the field itself

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Spatial and temporal changes of type VI collagen expression during mouse development.

    No full text
    The expression of type VI collagen has been studied in mouse tissues. By Northern blotting, the mRNA for the alpha 1 (VI) chain was detectable in whole embryos at 10.5 days postcoitum and steeply increased afterward. The messenger levels were high at birth, but decreased rapidly in the following days, reaching low levels in adult animals. In 2-month-old mice, lung, skin, adrenal gland, heart, skeletal muscle and tail and fat were among the most active producers of alpha 1 (VI) mRNA. In situ hybridization first identified mRNA for alpha 1 (VI) collagen in mesenchymal cells of 10.5-day embryos in various locations, including serosae, branchial arches, large blood vessels and the cephalic mesenchyme. Staining increased at later stages of development and most connective tissues were positive at 16.5 days and later. Strongly staining tissues were joints, intervertebral disks, perichondrium, periostium, dermis, skeletal muscle and heart valves, whereas cartilage and bone were very poorly labelled. Epithelia and the central nervous system were completely negative. In several organs, notably lung, salivary glands and the digestive tract, staining was concentrated underneath epithelia. This staining pattern was different from that for collagen type I, which was evenly distributed in the subepithelial mesenchyme. The pattern of distribution of the protein, revealed by immunocytochemistry, was coincident with that of the alpha 1 (VI) mRNA. In addition, the results confirmed that type VI collagen is preferentially deposited in the pericellular environment. This was particularly evident in skeletal muscle. The data show that type VI collagen is mainly produced by mesenchymal cells and suggest a role for the protein in delineating the boundary of distinct domains in connective tissue
    corecore