133 research outputs found

    Organosulfate Formation in Biogenic Secondary Organic Aerosol

    Get PDF
    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (α-pinene, β-pinene, d-limonene, l-limonene, α-terpinene, γ-terpinene, terpinolene, Δ3-carene, and β-phellandrene) and three monoterpenes (α-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, α-pinene, β-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%

    Terpenylic Acid and Related Compounds from the Oxidation of α-Pinene: Implications for New Particle Formation and Growth above Forests

    Get PDF
    Novel secondary organic aerosol (SOA) products from the monoterpene α-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic and 2-hydroxyterpenylic acid, and diaterpenylic acid acetate. The structural characterizations were based on the synthesis of reference compounds and detailed interpretation of mass spectral data. Terpenylic acid and diaterpenylic acid acetate are early oxidation products generated upon both photooxidation and ozonolysis, while 2-hydroxyterpenylic acid is an abundant SOA tracer in ambient fine aerosol that can be explained by further oxidation of terpenylic acid. Quantum chemical calculations support that noncovalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. The molecular properties allow us to explain initial particle formation in laboratory chamber experiments and are suggested to play a role in new particle formation and growth above forests, a natural phenomenon that has fascinated scientists for more than a century

    Tumour marker concentration at the start of chemotherapy is a stronger predictor of treatment failure than marker half-life: a study in patients with disseminated non-seminomatous testicular cancer.

    Get PDF
    We investigated the prognostic value of the serum half-life of human chorionic gonadotrophin (HCG) and alpha-fetoprotein (AFP) during induction chemotherapy and the relative prognostic importance of initial marker concentrations and marker half-life. Marker half-lives were calculated using two abnormal values observed between day 8 and day 22 of the first chemotherapy cycle. Moreover, analyses were carried out using day 43 as the second measurement point. Treatment failure at any time was chosen as the end point. The relative prognostic influence of marker half-lives and initial marker concentrations was tested in univariate and multivariate analyses. Half-lives were considered to be prolonged if > 3 days for HCG and > 6 days for AFP. In addition, we separated patients into those with half-lives > 6 days for HCG and those with half-lives > 10 days for AFP to examine whether these long half-lives were associated with a poor prognosis. A group of 669 patients treated with cisplatin combination chemotherapy was studied. Forty-two per cent of the patients had normal HCG and 37% had normal AFP at the start of chemotherapy. At day 22, HCG was still elevated in 138 patients and AFP in 211. At day 43, the numbers of these patients were 35 and 80 respectively. Based on the measurements obtained on day 8 and day 22, a half-life of HCG > 3 days or > 6 days and/or a half-life AFP > 6 days or > 10 days did not accurately predict treatment failure (P=0.413 and P=0.851, respectively; values obtained using tests for trend). However, initial marker concentrations of HCG and/or AFP > 1000 IU l(-1) were highly significant prognosticators for treatment failure (P=0.001 and P < 0.001 respectively), independent of half-life values. Half-lives calculated with the values obtained on day 43 did not contribute to the accuracy of the prediction of treatment failure. We conclude that half-lives of HCG and AFP during induction chemotherapy are inaccurate parameters for the prediction of treatment failure. In contrast, initial serum concentrations of HCG and AFP are highly significant in the prediction of unfavourable treatment outcome

    Multi-technique investigation of the binary fraction among A-F type candidate hybrid variable stars discovered by Kepler

    Get PDF
    Hundreds of candidate hybrid pulsators of intermediate type A-F were revealed by the recent space missions. Hybrid pulsators allow to study the full stellar interiors, where p- and g-modes are simultaneously excited. The true hybrid stars must be identified since other processes, due to stellar multiplicity or rotation, might explain the presence of (some) low frequencies observed in their periodograms. We measured the radial velocities of 50 candidate Delta Sct - Gamma Dor hybrid stars from the Kepler mission with the Hermes/Ace spectrographs over a span of months to years. We aim to derive the fraction of binary and multiple systems and to provide an independent and homogeneous determination of the atmospheric properties and vsini for all targets. The objective is to identify the physical cause of the low frequencies. We computed 1-D cross-correlation functions (CCFs) in order to find the best parameters in terms of the number of components, spectral type and vsini for each target. Radial velocities were measured from spectrum synthesis and by using a 2-D cross-correlation technique in the case of double- and triple-lined systems. Fundamental parameters were determined by fitting (composite) synthetic spectra to the normalised median spectra corrected for the appropriate Doppler shifts. We report on the analysis of 478 high-resolution Hermes and 41 Ace spectra of A/F-type candidate hybrid pulsators from the Kepler field. We determined their radial velocities, projected rotational velocities, atmospheric properties and classified our targets based on the shape of the CCFs and the temporal behaviour of the radial velocities. We derived orbital solutions for seven new systems. Three long-period preliminary orbital solutions are confirmed by a photometric time-delay analysis. Finally, we determined a global multiplicity fraction of 27% in our sample of candidate hybrid stars

    Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene

    Get PDF
    Recent work in our laboratory has shown that the photooxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In the current study, the chemical composition of SOA from the photooxidation of isoprene over the full range of NO_x conditions is investigated through a series of controlled laboratory chamber experiments. SOA composition is studied using a wide range of experimental techniques:  electrospray ionization−mass spectrometry, matrix-assisted laser desorption ionization−mass spectrometry, high-resolution mass spectrometry, online aerosol mass spectrometry, gas chromatography/mass spectrometry, and an iodometric-spectroscopic method. Oligomerization was observed to be an important SOA formation pathway in all cases; however, the nature of the oligomers depends strongly on the NO_x level, with acidic products formed under high-NO_x conditions only. We present, to our knowledge, the first evidence of particle-phase esterification reactions in SOA, where the further oxidation of the isoprene oxidation product methacrolein under high-NO_x conditions produces polyesters involving 2-methylglyceric acid as a key monomeric unit. These oligomers comprise ∼22−34% of the high-NO_x SOA mass. Under low-NO_x conditions, organic peroxides contribute significantly to the low-NO_x SOA mass (∼61% when SOA forms by nucleation and ∼25−30% in the presence of seed particles). The contribution of organic peroxides in the SOA decreases with time, indicating photochemical aging. Hemiacetal dimers are found to form from C_5 alkene triols and 2-methyltetrols under low-NO_x conditions; these compounds are also found in aerosol collected from the Amazonian rainforest, demonstrating the atmospheric relevance of these low-NO_x chamber experiments

    The Methodology of Modern Macroeconomics and the Descriptive Approach to Discounting

    Full text link
    Critics of modern macroeconomics often raise concerns about unwarranted welfare conclusions and data mining. This paper illustrates these concerns with a thought experiment, based on the debate in environmental economics about the appropriate discount rate in climate change analyses: I set up an economy where a social evaluator wants to determine the optimal time path of emission levels, and seeks advice for this from an old-style neo-classical macroeconomist and a new neo-classical (modern) macroeconomist; I then describe how both economists analyze the economy, their policy advice, and their mistakes. I then use the insights from this thought experiment to point out some pitfalls of the modern macroeconomic methodology
    corecore