958 research outputs found
Damping of Nodal Fermions Caused by a Dissipative Mode
Using a superconductor in 2+1 dimensions we show that the
Nambu Goldstone fluctuations are replaced by dissipative excitations. We find
that the nodal quasi-particles damping is caused by the strong dissipative
excitations near the nodal points. As a result we find that the scattering
rates are linear in frequency and not cubic as predicted in the literature for
the ``d'' wave superconductors. Our results explain the recent angle resolved
photoemission spectroscopy and optical conductivity in the BSCCO high
compounds.Comment: 10 page
Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the BiSe Topological Insulator
Dirac-like surface states on surfaces of topological insulators have a chiral
spin structure that suppresses back-scattering and protects the coherence of
these states in the presence of non-magnetic scatterers. In contrast, magnetic
scatterers should open the back- scattering channel via the spin-flip processes
and degrade the state's coherence. We present angle-resolved photoemission
spectroscopy studies of the electronic structure and the scattering rates upon
adsorption of various magnetic and non-magnetic impurities on the surface of
BiSe, a model topological insulator. We reveal a remarkable
insensitivity of the topological surface state to both non-magnetic and
magnetic impurities in the low impurity concentration regime. Scattering
channels open up with the emergence of hexagonal warping in the high-doping
regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure
The Ground State of the Pseudogap in Cuprate Superconductors
We present studies of the electronic structure of La2-xBaxCuO4, a system
where the superconductivity is strongly suppressed as static spin and charge
orders or "stripes" develop near the doping level of x=1/8. Using
angle-resolved photoemission and scanning tunneling microscopy, we detect an
energy gap at the Fermi surface with magnitude consistent with d-wave symmetry
and with linear density of states, vanishing only at four nodal points, even
when superconductivity disappears at x=1/8. Thus, the non-superconducting,
"striped" state at x=1/8 is consistent with a phase incoherent d-wave
superconductor whose Cooper pairs form spin/charge ordered structures instead
of becoming superconducting.Comment: This is the author's version of the wor
Fine Details of the Nodal Electronic Excitations in BiSrCaCuO
Very high energy resolution photoemission experiments on high quality samples
of optimally doped BiSrCaCuO show new features in the
low-energy electronic excitations. A marked change in the binding energy and
temperature dependence of the near-nodal scattering rates is observed near the
superconducting transition temperature, . The temperature slope of the
scattering rate measured at low energy shows a discontinuity at ~. In the
superconducting state, coherent excitations are found with the scattering rates
showing a cubic dependence on frequency and temperature. The superconducting
gap has a d-wave magnitude with negligible contribution from higher harmonics.
Further, the bi-layer splitting has been found to be finite at the nodal point.Comment: 5 pages, 4 figure
Quasiparticle Liquid in the Highly Overdoped Bi2212
We present results from the study of a highly overdoped (OD) Bi2212 with a
K using high resolution angle-resolved photoemission spectroscopy.
The temperature dependent spectra near the () point show the presence of
the sharp peak well above . From the nodal direction, we make comparison
of the self-energy with the optimally doped and underdoped cuprates, and the
Mo(110) surface state. We show that this OD cuprate appears to have properties
that approach that of the Mo. Further analysis shows that the OD has a more
-independent lineshape at the Fermi surface than the lower-doped cuprates.
This allows for a realistic comparison of the nodal lifetime values to the
experimental resistivity measurements via Boltzmann transport formulation. All
these observations point to the validity of the quasiparticle picture for the
OD even in the normal state within a certain energy and momentum range.Comment: 4 pages, 4 figure
High-energy kink in high-temperature superconductors
In conventional metals, electron-phonon coupling, or the phonon-mediated
interaction between electrons, has long been known to be the pairing
interaction responsible for the superconductivity. The strength of this
interaction essentially determines the superconducting transition temperature
TC. One manifestation of electron-phonon coupling is a mass renormalization of
the electronic dispersion at the energy scale associated with the phonons. This
renormalization is directly observable in photoemission experiments. In
contrast, there remains little consensus on the pairing mechanism in cuprate
high temperature superconductors. The recent observation of similar
renormalization effects in cuprates has raised the hope that the mechanism of
high temperature superconductivity may finally be resolved. The focus has been
on the low energy renormalization and associated "kink" in the dispersion at
around 50 meV. However at that energy scale, there are multiple candidates
including phonon branches, structure in the spin-fluctuation spectrum, and the
superconducting gap itself, making the unique identification of the excitation
responsible for the kink difficult. Here we show that the low-energy
renormalization at ~50 meV is only a small component of the total
renormalization, the majority of which occurs at an order of magnitude higher
energy (~350 meV). This high energy kink poses a new challenge for the physics
of the cuprates. Its role in superconductivity and relation to the low-energy
kink remains to be determined.Comment: 13 pages, 4 figure
Measurement of an Exceptionally Weak Electron-Phonon Coupling on the Surface of the Topological Insulator BiSe Using Angle-Resolved Photoemission Spectroscopy
Gapless surface states on topological insulators are protected from elastic
scattering on non-magnetic impurities which makes them promising candidates for
low-power electronic applications. However, for wide-spread applications, these
states should have to remain coherent at ambient temperatures. Here, we studied
temperature dependence of the electronic structure and the scattering rates on
the surface of a model topological insulator, BiSe, by high resolution
angle-resolved photoemission spectroscopy. We found an extremely weak
broadening of the topological surface state with temperature and no anomalies
in the state's dispersion, indicating exceptionally weak electron-phonon
coupling. Our results demonstrate that the topological surface state is
protected not only from elastic scattering on impurities, but also from
scattering on low-energy phonons, suggesting that topological insulators could
serve as a basis for room temperature electronic devices.Comment: published version, 5 pages, 4 figure
- …