4,683 research outputs found

    LOCALIZED LASER VAPORIZATION OF FILMS WITH COMPLEX TOPOLOGIES FOR SURFACE ACOUSTIC WAVE MICROGYROSCOPE SENSOR

    Get PDF
    We have developed a method for localized laser vaporization of a sensitive element film for a solid microgyroscope based on surface acoustic waves. A double-conversion scheme was chosen as a microgyroscope sensitive element configuration. It was shown that at least three technological operations are excluded at laser vaporization as compared with photolithography method. Research results on the formation of topologies with the usage of laser processing are presented. We have determined the parameters of laser processing for sensor topology configuring by means of thin-film coating evaporation with a thickness of 400 nm, which comprises 350 nm of aluminum and 50 nm of vanadium adhesive coating applied on a substrate made of quartz. The amplitude-frequency characteristic of the manufactured sample is obtained. It is revealed that the experimental sample has a high loss value caused by inaccuracies in its manufacturing technology. Recommendations were worked out for minimization of error sources in the manufacturing technology of microgyroscope sensitive element on surface acoustic waves with the use of the laser configuration method

    An evolution equation as the WKB correction in long-time asymptotics of Schrodinger dynamics

    Full text link
    We consider 3d Schrodinger operator with long-range potential that has short-range radial derivative. The long-time asymptotics of non-stationary problem is studied and existence of modified wave operators is proved. It turns out, the standard WKB correction should be replaced by the solution to certain evolution equation.Comment: This is a preprint of an article whose final and definitive form has been published in Comm. Partial Differential Equations, available online at http://www.informaworld.co

    Dust Size Growth and Settling in a Protoplanetary Disk

    Full text link
    We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2x10^3 - 4x10^4 yr at 1 - 30 AU, which is in good agreement with an analytic calculation by Nakagawa, Sekiya, & Hayashi (1986) although they did not take into account the particle size distribution explicitly. In an opposite extreme case of a globally turbulent disk, on the other hand, the dust particles fluctuate owing to turbulent motion of the gas and most particles become large enough to move inward very rapidly within 70 - 3x10^4 yr at 1 - 30 AU, depending on the strength of turbulence. Our result suggests that global turbulent motion should cease for the planetesimal formation in protoplanetary disks.Comment: 27 pages, 8 figures, accepted for publication in the Ap

    Derived coisotropic structures II: stacks and quantization

    Get PDF
    We extend results about nn-shifted coisotropic structures from part I of this work to the setting of derived Artin stacks. We show that an intersection of coisotropic morphisms carries a Poisson structure of shift one less. We also compare non-degenerate shifted coisotropic structures and shifted Lagrangian structures and show that there is a natural equivalence between the two spaces in agreement with the classical result. Finally, we define quantizations of nn-shifted coisotropic structures and show that they exist for n>1n>1.Comment: 45 pages. Contains the second half of arXiv:1608.01482v1 with new material adde

    Derived coisotropic structures I: affine case

    Get PDF
    We define and study coisotropic structures on morphisms of commutative dg algebras in the context of shifted Poisson geometry, i.e. PnP_n-algebras. Roughly speaking, a coisotropic morphism is given by a Pn+1P_{n+1}-algebra acting on a PnP_n-algebra. One of our main results is an identification of the space of such coisotropic structures with the space of Maurer--Cartan elements in a certain dg Lie algebra of relative polyvector fields. To achieve this goal, we construct a cofibrant replacement of the operad controlling coisotropic morphisms by analogy with the Swiss-cheese operad which can be of independent interest. Finally, we show that morphisms of shifted Poisson algebras are identified with coisotropic structures on their graph.Comment: 49 pages. v2: many proofs rewritten and the paper is split into two part

    Charges on Strange Quark Nuggets in Space

    Get PDF
    Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic γ\gamma -ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.Comment: CitationS added, new subsection added, more discussion, same numerical result

    Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse

    Full text link
    We model gravitational collapse leading to star formation in a wide range of isolated disk galaxies using a three-dimensional, smoothed particle hydrodynamics code. The model galaxies include a dark matter halo and a disk of stars and isothermal gas. Absorbing sink particles are used to directly measure the mass of gravitationally collapsing gas. They reach masses characteristic of stellar clusters. In this paper, we describe our galaxy models and numerical methods, followed by an investigation of the gravitational instability in these galaxies. Gravitational collapse forms star clusters with correlated positions and ages, as observed, for example, in the Large Magellanic Cloud. Gravitational instability alone acting in unperturbed galaxies appears sufficient to produce flocculent spiral arms, though not more organized patterns. Unstable galaxies show collapse in thin layers in the galactic plane; associated dust will form thin dust lanes in those galaxies, in agreement with observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with high quality color images can be fond in http://research.amnh.org/~yuexing/astro-ph/0501022.pd

    Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences

    Get PDF
    We study the characteristics of molecular gas in the central regions of spiral galaxies on the basis of our CO(J=1-0) imaging survey of 20 nearby spiral galaxies using the NRO and OVRO millimeter arrays. Condensations of molecular gas at galactic centers with sizescales < 1 kpc and CO-derived masses M_gas(R<500pc) = 10^8 - 10^9 M_sun are found to be prevalent in the gas-rich L^* galaxies. Moreover, the degree of gas concentration to the central kpc is found to be higher in barred systems than in unbarred galaxies. This is the first statistical evidence for the higher central concentration of molecular gas in barred galaxies, and it strongly supports the theory of bar-driven gas transport. It is most likely that more than half of molecular gas within the central kpc of a barred galaxy was transported there from outside by the bar. The supply of gas has exceeded the consumption of gas by star formation in the central kpc, resulting in the excess gas in the centers of barred systems. The mean rate of gas inflow is statistically estimated to be larger than 0.1 - 1 M_sun/yr. The correlation between gas properties in the central kpc and the type of nuclear spectrum (HII, LINER, or Seyfert) is investigated. A correlation is found in which galaxies with larger gas-to-dynamical mass ratios tend to have HII nuclear spectra, while galaxies with smaller ratios show spectra indicating AGN. Also, the theoretical prediction of bar-dissolution by condensation of gas to galactic centers is observationally tested. It is suggested that the timescale for bar dissolution is larger than 10^8 - 10^10 yr, or a bar in a L^* galaxy is not destroyed by a condensation of 10^8 - 10^9 M_sun gas in the central kpc.Comment: AASTeX, 20 pages, 8 eps figs, ApJ in press (10 Nov. 1999 issue
    corecore