329 research outputs found

    Studies on atmospheric gravity wave activity in the troposphere and lower stratosphere over a tropical station at Gadanki

    Get PDF
    MST radars are powerful tools to study the mesosphere, stratosphere and troposphere and have made considerable contributions to the studies of the dynamics of the upper, middle and lower atmosphere. Atmospheric gravity waves play a significant role in controlling middle and upper atmospheric dynamics. To date, frontal systems, convection, wind shear and topography have been thought to be the sources of gravity waves in the troposphere. All these studies pointed out that it is very essential to understand the generation, propagation and climatology of gravity waves. In this regard, several campaigns using Indian MST Radar observations have been carried out to explore the gravity wave activity over Gadanki in the troposphere and the lower stratosphere. The signatures of the gravity waves in the wind fields have been studied in four seasons viz., summer, monsoon, post-monsoon and winter. The large wind fluctuations were more prominent above 10 km during the summer and monsoon seasons. The wave periods are ranging from 10 min-175 min. The power spectral densities of gravity waves are found to be maximum in the stratospheric region. The vertical wavelength and the propagation direction of gravity waves were determined using hodograph analysis. The results show both down ward and upward propagating waves with a maximum vertical wave length of 3.3 km. The gravity wave associated momentum fluxes show that long period gravity waves carry more momentum flux than the short period waves and this is presented

    Validation of the COSMIC Radio Occultation Data over Gadanki (13.48°N, 79.2°E): A Tropical Region

    Full text link
    Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), consisting of six Low Earth Orbit (LEO) Global Position System (GPS) receivers, on board the Formosat Satellite 3 (FORMOSAT-3) is providing dense observations of density, refractivity, temperature and water vapor profiles of the neutral atmosphere since middle of July 2006. Special radiosonde (Väisälä) campaign was conducted at Gadanki (13.48°N, 79.18°E), a tropical site in India, during July 2006 to March 2007 to validate these meteorological parameters. Co-located Nd: YAG Rayleigh lidar was also operated during the overpass of COSMIC and is utilized to validate the temperatures in the height range of 30 to 40 km. Atotal of 142 overpasses occurred during the above mentioned period within 300 km distance from Gadanki out of which 41 overpasses occurred within a time difference of ±4 hours of radiosonde launch. In addition, 18 overpasses occurred within the time difference of ±4 hours of lidar operation. A detailed comparison has been made with all these overpasses for the refractivity, temperature and water vapor obtained from COSMIC. The water vapor comparison has shown generally a good agreement with a mean difference of 5 - 10% below 6 - 7 km. Although there is a colder bias between COSMIC and radiosonde, a very good comparison in temperature is also found between 10 and 27 km with a mean difference of less than 1 K (RMS difference is only 0.64 K). There exists a large difference in temperature of about 8 K between 30 and 40 km (between COSMIC and lidar). Possible reasons for these large differences are given. There was one event that occurred just over Gadanki for which a detailed comparison has been made with special emphasis on water vapor retrievals. Sensitivity test is also done on the fractional difference in N for the event that occurred on 24 July 2006 between COSMIC (1D-var) and radiosonde and found that pressure plays a key role than temperature in determining the refractivity

    Onset of negative interspike interval correlations in adapting neurons

    Full text link
    Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical description of conditional responses, we obtain analytically these correlations in an adequate dynamical neuron model resembling adaptation. We derive the serial correlation coefficients for arbitrary lags, under a small adaptation scenario. In this case, the behavior of correlations is universal and depends on the first-order statistical description of an exponentially driven time-inhomogeneous stochastic process.Comment: 12 pages (10 pages in the journal version), 6 figures, published in Phys. Rev. E; http://link.aps.org/doi/10.1103/PhysRevE.84.04190

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter

    Anatomy of Indian heatwaves

    Get PDF
    India suffers from major heatwaves during March-June. The rising trend of number of intense heatwaves in recent decades has been vaguely attributed to global warming. Since the heat waves have a serious effect on human mortality, root causes of these heatwaves need to be clarified. Based on the observed patterns and statistical analyses of the maximum temperature variability, we identified two types of heatwaves. The first-type of heatwave over the north-central India is found to be associated with blocking over the North Atlantic. The blocking over North Atlantic results in a cyclonic anomaly west of North Africa at upper levels. The stretching of vorticity generates a Rossby wave source of anomalous Rossby waves near the entrance of the African Jet. The resulting quasi-stationary Rossby wave-train along the Jet has a positive phase over Indian subcontinent causing anomalous sinking motion and thereby heatwave conditions over India. On the other hand, the second-type of heatwave over the coastal eastern India is found to be due to the anomalous Matsuno-Gill response to the anomalous cooling in the Pacific. The Matsuno-Gill response is such that it generates northwesterly anomalies over the landmass reducing the land-sea breeze, resulting in heatwaves
    corecore