382 research outputs found

    One-particle and collective electron spectra in hot and dense QED and their gauge dependence

    Get PDF
    The one-particle electron spectrum is found for hot and dense QED and its properties are investigated in comparison with the collective spectrum. It is shown that the one-particle spectrum (in any case its zero momentum limit) is gauge invariant, but the collective spectrum, being qualitatively different, is always gauge dependent. The exception is the case m,ÎĽ=0m,\mu=0 for which the collective spectrum long wavelength limit demonstrates the gauge invariance as well.Comment: 9 pages, latex, no figure

    Soliton Generation and Picosecond Collapse in Solid-State Lasers with Semiconductor Saturable Absorber

    Get PDF
    Based on self - consistent field theory we study a soliton generation in cw solid-state lasers with semiconductor saturable absorber. Various soliton destabilizations, i.e. the switch from femtosecond to picosecond generation (''picosecond collapse''), an automodulation regime, breakdown of soliton generation and hysteresis behavior, are predicted.Comment: 14 pages, 6 Postscript figures, Te

    Collective Excitations of Massive Dirac Particles in Hot and Dense Medium

    Get PDF
    The one-loop dispersion equation which defines the collective excitations of the massive Dirac particles in hot and dense quark-gluon medium is obtained in the high temperature limit for the case m<<Tm<<T and solved explicitly for all |\q| when ÎĽ=0\mu=0. Four well-separated spectrum branches (quasi-particle and quasi-hole excitations) are found and their behaviors for the small and large |\q| are investigated. All calculations are performed using the temperature Green function technique and fixing the Feynman gauge. The gauge dependency of the spectra found are briefly discussed.Comment: 7 pages, latex, no figure

    Extended symmetrical classical electrodynamics

    Full text link
    In the present article, we discuss a modification of classical electrodynamics in which ``ordinary'' point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field E and B. It is shown that the vectors E and B can be defined in terms of two 4-potentials and the components of k are the components of the 4-tensor of the third rank. The Lagrangian of modified electrodynamics is defined. The conditions are derived at which only one 4-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of the electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy and angular momentum of the monopole are found for different eigenvalues of k

    Broadband dispersion measurement of ZBLAN, germanate and silica fibers in MidIR

    Get PDF
    We report the first ultra-broad band dispersion measurements in short-length ZBLAN, germanate and silica-based optical fibers in the near- and midIR wavelength ranges between 1.7 and 2.0 ÎĽ m and from 2.3 to 2.45 ÎĽm, using two ultra-broadband light sources: a broadband superluminescent Tm-doped fiber source and a novel femtosecond pulsed mode-locked Cr:ZnS oscillator. The measured second order dispersion characteristics of the fibers correspond to the theoretical predictions (numerical calculations)

    Determination of the UV cut-off from the observed value of the Universe acceleration

    Get PDF
    It is shown that using of the equation of motion of the Universe scale factor allows calculation of the contribution of the vacuum fluctuations to the acceleration of the Universe expansion. Renormalization of the equation is needed only in the case of massive particles. Under a known number of the different kinds of fundamental fields, this provides determination of momentum of the ultraviolet cut-off from the observed value of acceleration.Comment: 10 pages, 1 figur

    Resonant Relaxation in Electroweak Baryogenesis

    Get PDF
    We compute the leading, chiral charge-changing relaxation term in the quantum transport equations that govern electroweak baryogenesis using the closed time path formulation of non-equilibrium quantum field theory. We show that the relaxation transport coefficients may be resonantly enhanced under appropriate conditions on electroweak model parameters and that such enhancements can mitigate the impact of similar enhancements in the CP-violating source terms. We also develop a power counting in the time and energy scales entering electroweak baryogenesis and include effects through second order in ratios ϵ\epsilon of the small and large scales. We illustrate the implications of the resonantly enhanced O(ϵ2){\cal O}(\epsilon^2) terms using the Minimal Supersymmetric Standard Model, focusing on the interplay between the requirements of baryogenesis and constraints obtained from collider studies, precision electroweak data, and electric dipole moment searches.Comment: 30 pages plus appendices, 7 figure

    Infrared Behavior of High-Temperature QCD

    Full text link
    The damping rate \gamma_t(p) of on-shell transverse gluons with ultrasoft momentum p is calculated in the context of next-to-leading-order hard-thermal-loop-summed perturbation of high-temperature QCD. It is obtained in an expansion to second order in p. The first coefficient is recovered but that of order p^2 is found divergent in the infrared. Divergences from light-like momenta do also occur but are circumvented. Our result and method are critically discussed, particularly regarding a Ward identity obtained in the literature. When enforcing the equality between \gamma_t(0) and \gamma_l(0), a rough estimate of the magnetic mass is obtained. Carrying a similar calculation in the context of scalar quantum electrodynamics shows that the early ultrasoft-momentum expansion we make has little to do with the infrared sensitivity of the result.Comment: REVTEX4, 55 page
    • …
    corecore