8,225 research outputs found
Quantized Maxwell Theory in a Conformally Invariant Gauge
Maxwell theory can be studied in a gauge which is invariant under conformal
rescalings of the metric, and first proposed by Eastwood and Singer. This paper
studies the corresponding quantization in flat Euclidean 4-space. The resulting
ghost operator is a fourth-order elliptic operator, while the operator P on
perturbations of the potential is a sixth-order elliptic operator. The operator
P may be reduced to a second-order non-minimal operator if a dimensionless
gauge parameter tends to infinity. Gauge-invariant boundary conditions are
obtained by setting to zero at the boundary the whole set of perturbations of
the potential, jointly with ghost perturbations and their normal derivative.
This is made possible by the fourth-order nature of the ghost operator. An
analytic representation of the ghost basis functions is also obtained.Comment: 8 pages, plain Tex. In this revised version, the calculation of ghost
basis functions has been amended, and the presentation has been improve
Euclidean Maxwell Theory in the Presence of Boundaries. II
Zeta-function regularization is applied to complete a recent analysis of the
quantized electromagnetic field in the presence of boundaries. The quantum
theory is studied by setting to zero on the boundary the magnetic field, the
gauge-averaging functional and hence the Faddeev-Popov ghost field. Electric
boundary conditions are also studied. On considering two gauge functionals
which involve covariant derivatives of the 4-vector potential, a series of
detailed calculations shows that, in the case of flat Euclidean 4-space bounded
by two concentric 3-spheres, one-loop quantum amplitudes are gauge independent
and their mode-by-mode evaluation agrees with the covariant formulae for such
amplitudes and coincides for magnetic or electric boundary conditions. By
contrast, if a single 3-sphere boundary is studied, one finds some
inconsistencies, i.e. gauge dependence of the amplitudes.Comment: 24 pages, plain-tex, recently appearing in Classical and Quantum
Gravity, volume 11, pages 2939-2950, December 1994. The authors apologize for
the delay in circulating the file, due to technical problems now fixe
Essential self-adjointness in one-loop quantum cosmology
The quantization of closed cosmologies makes it necessary to study squared
Dirac operators on closed intervals and the corresponding quantum amplitudes.
This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which
corrects section
Non-Local Boundary Conditions in Euclidean Quantum Gravity
Non-local boundary conditions for Euclidean quantum gravity are proposed,
consisting of an integro-differential boundary operator acting on metric
perturbations. In this case, the operator P on metric perturbations is of
Laplace type, subject to non-local boundary conditions; by contrast, its
adjoint is the sum of a Laplacian and of a singular Green operator, subject to
local boundary conditions. Self-adjointness of the boundary-value problem is
correctly formulated by looking at Dirichlet-type and Neumann-type realizations
of the operator P, following recent results in the literature. The set of
non-local boundary conditions for perturbative modes of the gravitational field
is written in general form on the Euclidean four-ball. For a particular choice
of the non-local boundary operator, explicit formulae for the boundary-value
problem are obtained in terms of a finite number of unknown functions, but
subject to some consistency conditions. Among the related issues, the problem
arises of whether non-local symmetries exist in Euclidean quantum gravity.Comment: 23 pages, plain Tex. The revised version is much longer, and new
original calculations are presented in section
Diffeomorphism invariant eigenvalue problem for metric perturbations in a bounded region
We suggest a method of construction of general diffeomorphism invariant
boundary conditions for metric fluctuations. The case of dimensional
Euclidean disk is studied in detail. The eigenvalue problem for the Laplace
operator on metric perturbations is reduced to that on -dimensional vector,
tensor and scalar fields. Explicit form of the eigenfunctions of the Laplace
operator is derived. We also study restrictions on boundary conditions which
are imposed by hermiticity of the Laplace operator.Comment: LATeX file, no figures, no special macro
KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages
Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma
Extracting chemical energy by growing disorder: Efficiency at maximum power
We consider the efficiency of chemical energy extraction from the environment
by the growth of a copolymer made of two constituent units in the
entropy-driven regime. We show that the thermodynamic nonlinearity associated
with the information processing aspect is responsible for a branching of the
system properties such as power, speed of growth, entropy production, and
efficiency, with varying affinity. The standard linear thermodynamics argument
which predicts an efficiency of 1/2 at maximum power is inappropriate because
the regime of maximum power is located either outside of the linear regime or
on a separate bifurcated branch, and because the usual thermodynamic force is
not the natural variable for this optimization.Comment: 6 pages, 4 figure
Development and distribution of the non-indigenous Pacific oyster (Crassostrea gigas) in the Dutch Wadden Sea
Pacific oysters (Crassostrea gigas) were first observed in the Dutch Wadden Sea near Texel in 1983. The population increased slowly in the beginning but grew exponentially from the mid-1990s onwards, although now some stabilisation seems to be occurring. They occur on a variety of substrates such as mussel beds (Mytilus edulis), shell banks, dikes and poles. After initial settlement spat may fall on older individuals and congregate to dense clumps and subsequently form reefs. Individual Pacific oysters grow 3–4 cm long in their first year and 2–3 cm in their second year. Many mussel beds (Mytilus edulis) are slowly taken over by Pacific oysters, but there are also several reports of mussel spat settling on Pacific oyster reefs. This might in the end result in combined reefs. Successful Pacific oyster spat fall seems to be related to high summer temperatures, but also after mild summers much spat can be found on old (Pacific oyster) shells. Predation is of limited importance. Mortality factors are unknown, but every now and then unexplained mass mortality occurs. The gradual spread of the Pacific oyster in the Dutch Wadden Sea is documented in the first instance based on historical and anecdotal information. At the start of the more in-depth investigation in 2002, Pacific oysters of all size classes were already present near Texel. Near Ameland the development could be followed from the first observed settlement. On dense reefs each square metre may contain more than 500 adult Pacific oysters, weighing more than 100 kg per m² fresh weigh
New Developments in the Spectral Asymptotics of Quantum Gravity
A vanishing one-loop wave function of the Universe in the limit of small
three-geometry is found, on imposing diffeomorphism-invariant boundary
conditions on the Euclidean 4-ball in the de Donder gauge. This result suggests
a quantum avoidance of the cosmological singularity driven by full
diffeomorphism invariance of the boundary-value problem for one-loop quantum
theory. All of this is made possible by a peculiar spectral cancellation on the
Euclidean 4-ball, here derived and discussed.Comment: 7 pages, latex file. Paper prepared for the Conference "QFEXT05:
Quantum Field Theory Under the Influence of External Conditions", Barcelona,
September 5 - September 9, 2005. In the final version, the presentation has
been further improved, and yet other References have been adde
- …