4,749 research outputs found

    Update or Wait: How to Keep Your Data Fresh

    Full text link
    In this work, we study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel. A proper metric for data freshness at the destination is the age-of-information, or simply age, which is defined as how old the freshest received update is since the moment that this update was generated at the source node (e.g., a sensor). A reasonable update policy is the zero-wait policy, i.e., the source node submits a fresh update once the previous update is delivered and the channel becomes free, which achieves the maximum throughput and the minimum delay. Surprisingly, this zero-wait policy does not always minimize the age. This counter-intuitive phenomenon motivates us to study how to optimally control information updates to keep the data fresh and to understand when the zero-wait policy is optimal. We introduce a general age penalty function to characterize the level of dissatisfaction on data staleness and formulate the average age penalty minimization problem as a constrained semi-Markov decision problem (SMDP) with an uncountable state space. We develop efficient algorithms to find the optimal update policy among all causal policies, and establish sufficient and necessary conditions for the optimality of the zero-wait policy. Our investigation shows that the zero-wait policy is far from the optimum if (i) the age penalty function grows quickly with respect to the age, (ii) the packet transmission times over the channel are positively correlated over time, or (iii) the packet transmission times are highly random (e.g., following a heavy-tail distribution)

    Prostate-specific PTen deletion in mice activates inflammatory microRNA expression pathways in the epithelium early in hyperplasia development

    Get PDF
    PTen loss is one of the most frequent events in prostate cancer both at the initiation stage and during late stage metastatic development. The mouse model of prostate-specific probasin-mediated Pten deletion leads to prostate intraepithelial neoplasia (PIN) leading to adenocarcinoma. Using this model, we analysed the miR and mRNA transcriptome profile of Pten−/− PIN versus wild type age-matched prostate tissues and analysed the effects of Pten loss on miR expression in the early neoplastic process. At the PIN stage, Pten loss significantly changed the expression of over 20 miRNAs and over 4000 genes. The observed miR expression indicated a strong immunological cohort, which is seen in many human and mouse cancers and is thought to derive from infiltrating B and T immune cells. However, upon in situ hybridisation, these immunologically related miRs did not correlate with immune cell location, and emanated from the prostate epithelium itself and not from the associated immune cells present. Growing Pten−/− prostate cells in culture showed that the overexpressed miRNAs seen in Pten−/− were directly in response to the overactive PI3 kinase pathway and were in part responsible in reducing target gene expression levels. Inhibition of PI3 kinase downstream regulators, or re-introducing wild type PtencDNA reduced miR overexpression resulting in increased miR target gene expression. MiR inhibitors also showed this pattern, and synergised with an mTORC1 inhibitor. Overall, Pten deletion in the prostate epithelium activated a cohort of inflammation-related miRs usually associated with immune responses from B and T cells. These oncomiRs may then accelerate carcinogenesis

    Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5–10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC

    microRNA expression in acute myeloid leukaemia: New targets for therapy?

    Get PDF
    Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future

    International Tourism: An Unrecognized Potential in Rural Tourism Development

    Get PDF
    This paper presents an overview of international tourism and its role in rural economic development. It briefly describes the current approaches to rural economic development followed by a brief look at international tourism 1n the United States, and the potential for tourism in rural areas is examined. An initial step in assessing the extent to which international tourists visit rural America is determining the factors which currently attract those visitors to rural areas. The purpose of this paper is to profile potential international travelers to rural areas

    Issues in Rural Community Tourism Development

    Get PDF
    Policy makers are turning to tourism as a potential industry force that may bring both economic and demographic stability to American rural communities. The systematic planning and appropriate utilization of community related physical, economic, and socio-cultural attributes is the key to the establishment of sustainable tourism. This paper focuses on several issues that are increasingly recognized as critical factors in the community system. Both quality of life and sense of place are emphasized. The paper concludes with broadly defined guidelines for future planning toward sustainable development

    MicroRNA-Regulated Signaling Pathways: Potential Biomarkers for Pancreatic Ductal Adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC

    Epigenetic Mechanisms of Metal Carcinogenicity

    Get PDF
    Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously – in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development
    • …
    corecore