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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of
pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated
deaths. The high mortality rate is due to the asymptomatic progression of the clinical features
until the advanced stages of the disease and the limited effectiveness of the current therapeutics.
Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression
and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for
PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression
of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested
that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress
and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is
the foundation for cellular damage. Current data have implicated multiple systems as hallmarks
of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial
dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can
have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth,
survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to
these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved
understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-
mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of
metabolic alterations in the progression of PDAC.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and a major cause of cancer-
associated deaths in Western countries [1]. The poor prognosis of PDAC is the outcome of
late diagnosis of the disease when the tumor is locally advanced or has metastasized [2].
PDAC can be characterized as a “silent killer”, since it has the smallest overall survival
rate of all human cancers [3]; the median survival rate does not exceed 5 to 8 months [4].
PDAC prognosis is poor due to enhanced cell proliferation, invasion, and metastatic
features in combination with the chemo- and radiotherapy resistance of PDAC cells [5].
Consequently, early-stage diagnostic biomarkers and efficient therapeutic strategies are
crucial for minimizing PDAC-related deaths [6].

In recent years, numerous important findings have been discovered in relation to
the molecular biology of PDAC in diagnosis, staging, and treatment [7]. However, since
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PDAC is a highly metastatic malignancy, only a small portion of PDAC patients have
benefited from an improvement in overall survival rates [7,8]. Gemcitabine is the first
drug treatment that improved median survival, but only by a few weeks [9]. Another
commonly used chemotherapy agent, FOLFIRINOX (5-FU, irinotecan, oxaliplatin, and
leucovorin), combined with gemcitabine has been suggested to elevate the median survival
rate to 11.1 months, in contrast to 6.8 months with gemcitabine alone [10]. Nevertheless,
the limitations of the current therapeutic options for PDAC accentuate the importance
of a better understanding of the molecular mechanisms and pathways linked to PDAC.
Therefore, through a better understanding of the modified molecular signaling, we would
have the ability to diagnose PDAC early in the progression of the disease and develop
beneficial therapeutic regimens that could abort the aggressiveness of PDAC [11].

PDAC development originates from pre-cancerous lesions to pancreatic intraepithe-
lial neoplasia (PanIN-I, -II, or -III) to more advanced invasion and metastasis, which is
associated both with the activation of several oncogenes and the inactivation of tumor
suppressors [12]. The most common genetic alterations linked to PDAC development
are mutations in Kirsten rat sarcoma viral homolog (K-RAS) and the overexpression of
human epidermal growth factor receptor (HER-2/neu) [13]. At later stages (PanIN-III
or -IV), the inactivation of tumor suppressor genes (TS), including cyclin-dependent ki-
nase inhibitor 2A (CDKN2A), tumor protein 53 (TP53) and Sma- and Mad-related protein
(SMAD) family number 4 (SMAD4) [13,14], has been considered as a key regulator of
PDAC pathogenesis [15]. Moreover, previous studies have revealed that 12 main signaling
pathways, comprising KRAS signaling, Hedgehog signaling, apoptosis, control of G1/S
phase transition and transforming growth factor (TGF-β) signaling, are dysregulated in
more than 80% of PDAC patients [16,17]. Modifiable risk factors can significantly increase
the risk of PDAC development up to 132-fold [18]. Some of these risks include chronic pan-
creatitis development, diabetes mellitus, and some infectious diseases [19]. Additionally,
environmental exposures can induce PDAC development through various mechanisms,
such as the inhalation of cigarette smoke, exposure to mutagenic nitrosamines or chlo-
rinated hydrocarbon solvents, and exposure to toxic metals such as arsenic, nickel, and
cadmium [20–26].

miRs are small (18 to 28 nucleotides long), endogenous, non-coding, evolutionary
conserved, single-stranded RNA molecules that have been shown to moderate gene ex-
pression at the posttranscriptional level through binding to the complementary sequences
of their target mRNAs at the 3′ untranslated region (UTRs) [27]. Based on the interactions
between the 3′ untranslated region (3′ UTR) and mRNAs, miRs can control the expression
levels of several genes and also regulate a number of cell signalling pathways related to
tumorigenesis [28]. miRs play a significant role not only in cell growth and development,
but also in cell survival and lipid/glucose metabolic pathways in numerous carcinomas
and autoimmune diseases [29,30]. Consequently, alterations in the expression of miRs can
cause apoptosis, angiogenesis, and metastasis [31]. Specifically, epithelial–mesenchymal
transition (EMT) can be considered as a key component of the metastatic cascade, which
includes the repression of E-cadherin and the activation of genes related to motility and
invasion [32]. miRs can act as oncogenes (oncomiR) or tumor suppressor genes (tsmiR) [33].
Recent studies have suggested a correlation between aberrant expression levels of numer-
ous miRs and PDAC, especially in the initiation, proliferation, and chemoresistance of
PDAC [34,35]. miRs can be characterized as vital biomarkers not only for the early progno-
sis and diagnosis of PDAC, but also for better management of therapeutic specimens [36].
Identifying the most commonly expressed miRs and their related signaling pathways is
crucial for a better understanding of PDAC pathophysiology. The aim of this review is to
explore the signaling pathways that are associated with PDAC prognosis and metastasis
via miR signatures.
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2. Signaling Pathways Associated with PDAC
2.1. TGF-β and HGF-MET Signaling Pathways

SMADs have been widely associated with PDAC progression and are involved in
several biological processes, such as cell proliferation, differentiation, and apoptosis, in
PDAC pathogenesis [37] through the transduction of the TGF-β signaling pathway. The
TGF-β pathway is regulated by three principal target genes, including TGFBR2, SMAD3
and SMAD4, which are involved in cell growth, differentiation, and cell cycle progression
in PDAC [38]. Specifically, TGF-β is one of the most critical EMT-inducing factors in several
malignancies, including PDAC [39]. Moreover, SMAD4 mutations are common in the
TGF-β pathway [40] and are found in 60% of PDAC cases [16], where it is associated with
a higher risk of metastasis and poor prognosis [41,42]. SMAD4 inactivation is present in
the late stages of PDAC development, while normal expression of SMAD4 is observed in
early PanIN lesions [40]. Specifically, TGF-β moderates EMT, metastasis, extravasation of
colonization sites, and escape from immune surveillance in advanced and metastatic PDAC
cases [43]. A study by Li et al. stated that the loss of SMAD4 can cause elevated levels
of forkhead Box M1 (FOXM1), nuclear localization of β-catenin, and decreased levels of
miR-494 [44], which results not only in elevated cell proliferation, migration, and invasion,
but also in increased resistance to gemcitabine in PDAC patients [45]. Further miRs that
are also linked to SMAD4 expression in PDAC are miR-421 and miR-483-3p [46,47]. The
mesenchymal–epithelial transition factor gene (MET) can be activated as a response to
hepatocyte growth factor (HGF) [45]. Specifically, Src, MEK–ERK1/2, PI3K–AKT, NK-κB,
mTOR, and STAT are common effector molecules of the HGF-MET signaling cascade [48],
and are associated with cell proliferation, migration, and survival [49]. In PDAC, ele-
vated MET expression levels have been observed and linked to tumor-node-metastasis
(TNM) stage [49]. Furthermore, increased MET expression levels have also been correlated
to epithelial–mesenchymal transition (EMT)-like changes and gemcitabine resistance in
PDAC [50]. In particular, miR-26a has been associated with the upregulation of MET in
PDAC cancer stem cells [51]. A previous study has revealed that miR-424-5p is overex-
pressed in PDAC, and that it can also regulate the ERK1/2 signaling pathway through the
negative modulation of SOCS6 [52].

2.2. JAK–STAT Signaling Pathway

Previous studies have shown that mutations in the JAK–STAT signaling pathway
are closely associated with PDAC progression [45]. Specifically, downregulation of let-
7 has been determined in PDAC and has been associated not only with the decreased
phosphorylation/activation of STAT3 and its downstream signaling events, but also with
the downregulated growth and migration of PDAC cells [53]. The cytoplasmic expression
of suppressor of cytokine signaling 3 (SOCS3) can be enhanced by let-7 re-expression, which
further leads to the blockage of STAT3 activation by JAK2 [53]. Further miRs associated with
the JAK–STAT pathway in PDAC are miR-216a, miR-130b, and miR-155 [54]. In particular,
miR-216a is downregulated in PDAC and is the direct target of JAK2 [55]. Additionally,
miR-130b is overexpressed in PDAC and binds directly to the 3′-UTR of STAT3 mRNA [56].
Aberrant expression of this miR is linked to poor prognosis, suppression of cell proliferation,
and invasion in PDAC by inhibiting STAT3 [56]. miR-155 is also closely correlated with
the JAK–STAT signaling pathway [54] through the inhibition of SOCS1, which further
promotes PDAC cell invasion and migration [57].

2.3. PI3K–AKT Signaling Pathway

The PI3K–AKT signaling pathway is associated with cell proliferation and the in-
hibition of apoptosis in PDAC [58]. Specifically, PI3K–AKT–mTOR signaling, which is
suppressed by PTEN, can be targeted by miR-21, miR-221, and miR-181a [59–62]. miR-21
inhibits cell cycle arrest, apoptosis, and gemcitabine sensitivity [59], and thus the inhibition
of miR-221 can result in the uncontrolled proliferation and migration of PDAC cells [60,63].
miR-181a also prompts the migration of PDAC cells [61]. Controversially, miR-375 and
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miR-220c are also linked to the PI3K–AKT signaling pathway in PDAC [54]. PDK1 encodes
a kinase downstream of PI3K and is the direct target of miR-375 [64]. Moreover, the upreg-
ulation of miR-200c is also linked to both EMT [65] and MUC4 expression in PDAC [66].
Specifically, MUC4 expression results not only in the stabilization of HER2, but also in the
activation of AKT, which further leads to the activation of N-cadherin [67,68].

2.4. TP53 Signaling Pathway and Apoptosis

The loss of TP53 is detected in more than 70% of PDAC patients, particularly in
advanced cases, with the most common mutations being missense point mutations [40,69].
The inactivation of p53 has consequences for PDAC heterogeneity and chemoresistance [70]
and results in the dysregulation of several biological processes, such as cell proliferation,
migration, invasion, and apoptosis [71]. Some examples of miRs that can target p53 are
miR-222 and miR-203 [72]. Previous studies have shown that TP53 directly regulates miR-
34, which in turn targets NOTCH (which is responsible for the maintenance and survival
of PDAC cells) [71]. Moreover, it has been shown that miR-155 downregulates the TP53-
induced nuclear protein 1 gene, which promotes PDAC progression [73]. Dysregulation of
apoptosis is a common cause of chemoresistance in PDAC and can be caused by several
stimulatory and inhibitory factors that are associated with a high number of miRs [74]. For
example, oncogenic miR-21 is observed in several cancer types and controls genes that
are necessary for apoptosis [75]. Additionally, miR-23a can target APAF1, which results
in the activation of caspase-9 and prompts apoptosis in several cancer types, including
PDAC [76]. Furthermore, in PDAC, a decrease in the expression levels of BIM has been
observed through the modulation of miR-24, which inhibits apoptosis and the cell cycle [76].

2.5. KRAS Signaling Pathway

K-RAS mutations have been reported not only in more than 90% of PDAC patients, but
also in colorectal cancer, lung adenocarcinomas, and urogenital cancers [77,78]. In recent
years, numerous miRs have been found to be key regulators of the KRAS signaling pathway
in PDAC. Specifically, miR-217 acts as a tumor suppressor in PDAC, which directly targets
the KRAS oncogene [79]. miR-217 causes a decrease in the constitutive phosphorylation
of the downstream signal transducer AKT [79]. A study by Yu et al. also suggested that
miR-96 not only targets KRAS, but also negatively modulates the phosphorylated AKT
signaling pathway downstream of KRAS [80]. Further studies have also observed that
miR-126 and let-7d target KRAS via post-transcriptional upregulation [81]. Moreover, the
miR-21 promoter can be stimulated by activated KRAS (G12D) in PDAC cells [82], which
has been linked to poor prognosis in PDAC [16]. miR-206 acts as a tumor suppressor in
PDAC and was found to inhibit both the KRAS and ANXA2 oncogenes [83]. Hence, miR-
206 can be a negative regulator of oncogenic KRAS-induced NF-κB transcriptional activity,
which leads to reduced proangiogenic and proinflammatory factors that further result in
tumor growth and poor prognosis [84]. miR-27a has been found to be overexpressed in
PDAC and has been linked to reduced cell growth and migration [54]. Specifically, miR-27a
is the direct target of Sprouty2, which controls KRAS expression [85]. The overexpression
of miR-143/145 is repressed by activated KRAS, which promotes the growth of PDAC
cells [86]. Additionally, activated KRAS can stimulate downstream signaling components,
including MAP2K1/MEK and MAPK1/ERK2 [15,87,88]. Collisson et al. have shown that
the MAPK signaling pathway is involved in the genesis of PanIN, especially in the early
stages of PDAC development [89]. Therefore, further understanding of the oncogenic role
of KRAS in PDAC could lead to novel strategies for earlier diagnosis and a more effective
targeted therapy for this malignancy.

2.6. Epidermal Growth Factor Receptor and HER2/neu Signaling Pathways

The epidermal growth factor receptor (EGFR) family is a group of cytoplasmic receptor
tyrosine kinases that contains the human EGF receptor or Her1 (EGFR or ErbB-1), Her2
(EGFR2 or ErbB-2), Her3 (EGFR3 or ErbB-3), and Her4 (EGFR4 or ErbB-4) [40]. Specifically,
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ErbB-2 is commonly upregulated in PDAC, particularly in PanIN lesions and carcinoma in
situ lesions [40] and has been linked with invasion [40]. Moreover, two common ligands of
EGFR, EGF and TGF-α, are significantly upregulated in PDAC tissues [40]. In particular,
TGF-α can activate Notch signaling downstream of EGFR signaling [90]. Similarly, ErbB-3
has been also found to be overexpressed in PDAC patients with advanced tumor stages and
limited survival time [91]. Hence, it has been suggested that targeting EGFR could be an
effective therapeutic strategy in PDAC patients [40]. Subsequently, ErbB-1 has been linked
to both aggressiveness and unfavorable prognosis in PDAC cases [92]. Furthermore, EGFR
upregulation is observed in more than 95% of PDAC cases and is closely associated with the
aberrant expression of numerous miRs in PDAC [93]. A study by Du Rieu et al. indicated
that EGFR could promote the overexpression of miR-21 in PDAC cells [94]. A further study
by Ali et al. showed a correlation between miR-146a and the upregulation of EGFR in
PDAC cells [93]. Another study also demonstrated that miR-200c can directly target the
expression levels of mitogen-inducible gene 6 (MIG6), which is a negative modulator of
EGFR [95]. The HER2/neu signaling pathway plays a key role in PDAC prognosis [96],
as 4–50% of PDAC cases show HER2 upregulation [97]. Recent studies have suggested
a correlation between miR-150 and the HER2/neu signaling pathway [45]; in particular,
miR-150 is upregulated in PDAC and results in a considerable reduction in the expression
levels of its target gene, MUC4 [45].

2.7. Notch and Hedgehog Signaling Pathways

The Notch signaling pathway, which is crucial for tissue proliferation, the develop-
ment of organs, cell differentiation, and apoptosis, has been linked with poor prognosis in
PDAC [73,98]. The oncogenic role of Notch homolog 1 (Notch) activation contributes to
stem cell self-renewal, cell proliferation, apoptosis, migration, invasion, metastasis, and
angiogenesis [99]. Blocking of the Notch signaling pathway is related to the attenuation
of NF-κB activity and upregulation of p21 and p27 [100]. Elevated expression of Notch
pathway genes is present in early PanIN lesions [90]. It has been demonstrated that several
miRs are associated with the Notch pathway in PDAC [83]. Specifically, miR-34 can be
directly regulated by TP53, which further leads to the downstream signaling of Notch
targets [83]. Moreover, Notch-1/2 can be downregulated through the restoration of miR-34
expression in PDAC cancer stem cells (CSCs) [101]. Furthermore, treatment of PDAC
stem cells with chromatin-modulating agents can also lead to the suppression of miR-34
targets such as Bcl-2, CDK6, and SIRT1 [71]. A further study by Brabletz and colleagues
suggested that miR-200 can inhibit Notch pathway components such as Jagged1 and the
mastermind-like coactivators Maml2 and Maml3, which further prompt the enhancement
of Notch activation through EMT and ZEB1 [102]. Other studies have also remarked that
the upregulation of miR-145 and downregulation of let-7a and miR-200 causes not only a
decrease in the expression of EMT-related transcription factors, but also the inhibition of
Notch1 via miR-144 [103]. The Hedgehog signaling pathway (HH) acts as a regulator of
embryonic development but is also responsible for the moderation of CSCs [104]. Specifi-
cally, several cases with deregulations in HH signaling have been observed in PDAC [105].
Previous studies have shown that the activity of this pathway is upregulated in PanIN
lesions, which suggests that HH could be a regulator of the early and late stages of PDAC
pathogenesis [105]. The HH pathway also plays a crucial role in cell cycle progression and
apoptosis in PDAC [40]. Hence, the inhibition of several HH pathway components could
be a novel therapeutic strategy for PDAC [40]. A study by Dosch et al. has demonstrated
that Hedgehog, which is a secreted ligand, can bind to its receptor, Patched1 (PTCA1) [106].
In PDAC, PTCA1 can be downregulated by miR-212, which is overexpressed in this malig-
nancy. This could lead to unfavorable effects on cell growth, migration, and invasion via
the HH pathway [107].
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2.8. Wnt/β-Catenin Signaling Pathway

The WNT/β-catenin signaling pathway plays a crucial role in several biological and
cellular processes, such as proliferation, differentiation, invasion, and migration, while it
can also affect the PDAC tumor cell compartment [54]. miR-29c, which is downregulated in
PDAC, can be suppressed by TGF-β but can also moderate the regulators upstream of WNT,
including FZD4, FZD5, FRAT2, and LRP-6 [108]. Similarly, miR-29a expression levels are
associated with both the resistance of PDAC cells to gemcitabine and with the activation of
the Wnt/β-catenin signaling pathway [109]. Moreover, this pathway can be activated when
the cell membrane of the WNT receptor is bound to its ligands, which leads to the release
of β-catenin into the cytoplasm [40]. The elevated expression of β-catenin is observed in
most PDAC cases [110], especially in the later stages of PanIN lesion development [111].

2.9. Cell Cycle Signaling Pathway and p16/CDKN2A Inactivation

The cell cycle is controlled by the activity of Cdk/cyclins, which regulate several
mechanisms in normal cells [112]. The overexpression of cyclin D1 and downregulation
of p16 have been found in several PDAC cases [113]. Recent studies have shown that
a high number of miRs are associated with dysregulations in cell cycle signaling [54].
Specifically, cyclin D1-dependent kinase can be targeted by miR-107 to initiate cell cycle
progression [112], whereas, in PDAC, miR-107 can be silenced through the methylation
of CpG islands in its 5′ promoter region [114]. A study by Zhao et al. has shown that
miR-192 results in the promotion of cell proliferation, and it can also moderate cycle
progression via the G1 to S-phase transition in PDAC cells [115]. This study revealed
that the overexpression of miR-192 led to an elevated expression of cyclin D1, cyclin D2,
CDK4, and CDC2 [115]. Further research denoted that miR-301a is responsible for the
promotion of PDAC cell proliferation through the inhibition of the Bim gene [116], which
acts as an initiator of apoptosis through the generation of multidomain pro-apoptotic
proteins, including Bak and Bax [117]. Additionally, miR-193b can deregulate the action
of the KRAS pathway in PDAC [83]. miR-193b acts as a cell cycle brake in PDAC, which
induces G1-phase arrest and reduces the fraction of cells in the S phase [118]. miR-223
can indirectly target cyclin E2, which further inhibits FBXW7 [11,119]. Moreover, cyclin
E2 can be also targeted by p27 and p57, which negatively regulate G1/S progression via
miR-222 [59,120]. Conclusively, a previous study has also indicated that miR-148a can
target CDC25B, which controls the activation of distinct CDK/cyclin complexes [121]. This
can lead to the inhibition of PDAC cell phenotype [122]. The p16-Ink4A locus is encoded
by the CDKN2A tumor suppressor gene [123] and alterations in the expression levels of
Ink4A have been found in 95% of PDAC cases [124]. Loss of p16 is linked to early PanIN
lesions through invasive carcinomas [125]. P16 is a well-described cyclin-dependent kinase
inhibitor which binds to CDK4 and CDK6 [126]; it is the product of the CDKN2A gene and is
connected to PDAC [127]. p16 is involved in the inhibition of the activity of phosphorylated
retinoblastoma (pRb), which is responsible for G1/S transition [126]. Moreover, specific
miRs such as miR-222 can directly target p27 and p57, which are essential cell cycle
inhibitors [128]. A further study has also denoted that dysregulated expression levels of
both miR-132 and miR-212 can cause G2/M cell cycle arrest and decreased cell proliferation
in PDAC [129]. Nevertheless, these mechanisms have not been fully understood in PDAC
and therefore the examination of these pathway regulators in PDAC is vital [130].

2.10. Transcription Factors and DNA Methylation

Transcription factors can affect the downstream gene transcription of signal trans-
duction pathways which are targeted not only by genetic alterations, but also through
epigenetic alterations, which lead to the aggressiveness of PDAC [131]. Specifically, both
DNA methylation and histone tail alterations are associated with epigenetic modulation
through chromatin remodeling [132]. Controversially, forkhead members of the class O
(FOXO) transcription factors have been characterized as tumor suppressors in numerous
biological processes, such as stress resistance, metabolism, cell cycle, apoptosis, oxidative
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stress, [133] and DNA repair [134]. miR-21 can target FOXO1, which promotes PDAC
growth in vivo [135]. Similarly, FOXO3a can be targeted by miR-155 in PDAC, which
further leads to cell proliferation and metastasis through the generation of reactive oxygen
species [136]. The FOXM1 transcription factor can be overexpressed through the regulation
of miR-200b expression in PDAC [137]. In addition, NF-κB is closely related to several
cellular processes and its expression is attributed to the aggressiveness of PDAC [138].
NF-κB can be downregulated upon the upregulation of miR-146a in PDAC [139]; NF-κB
activity can be also increased via miR-301a in PDAC, which results in increased tumor
growth [140]. Previous studies have also revealed that DNA methylation plays a crucial
role during PDAC development [141]. Specifically, DNA methyltransferase 1 (DNMT1) is
commonly upregulated in several cancer types [142], including PDAC, and can be targeted
both by miR-148b and miR-152 [143]. Moreover, in PDAC, miR-141 can directly target
Yes-associated protein 1 (YAP1), which is a main downstream effector of the protein kinase
Hpo (HIPPO) pathway. The HIPPO pathway controls tissue homeostasis, organ size, re-
generation, and tumorigenesis [144]. miR-217 can directly target sirtuin 1 (SIRT1), which is
an NAD-dependent deacetylase that regulates cell proliferation, differentiation, apopto-
sis, metabolism, DNA damage, stress responses, genome stability, and cell survival [145].
Upregulated SIRT1 can also generate EMT in PDAC patients [146] (Table 1, Figure 1).

Table 1. MicroRNAs (miRs) and their expression levels and functions in pancreatic ductal adenocarcinoma (PDAC).

miRs Regulation in
PDAC

Signaling Pathways
Involved Target Genes Functional Involvement in

PDAC References

let-7 Down JAK–STAT
K-RAS

STAT3, SOCS3,
N-cadherin, ZEB1 Tumor growth, migration [53]

let-7a Up NOTCH JAK, STAT EMT [103]

let-7d Up K-RAS KRAS Cell proliferation, migration,
invasion, apoptosis [81]

miR-21 Up

PI3K–AKT
K-RAS
EGFR

Cell cycle
Apoptosis

G12D, p27, p57,
FOXO1, Bcl-2,

FasL, PI3K, AKT,
PTEN, RECK,

SPRY2

Cell cycle arrest, apoptosis,
gemcitabine resistance,

aggressiveness
[59,82,94]

miR-23a Up Apoptosis APAF1 Apoptosis [76]

miR-24 Up Apoptosis BIM Apoptosis, cell cycle [76]

miR-26a-5p Down HGF–MET ARMTL2, Cyclin
E2, MMP12

Cell proliferation, migration,
survival, EMT [51]

miR-27a Up K-RAS Sprouty2 Cell proliferation, migration,
invasion, apoptosis [85]

miR-29a Up Wnt MUC1

Cell proliferation,
differentiation, invasion,
migration, gemcitabine

resistance

[109]

miR-29c Down Wnt ZD4, FZD5,
FRAT2, LRP-6

Cell proliferation,
differentiation, invasion,

migration
[108]

miR-34a Down Tp53
NOTCH

NOTCH1/2CDK6,
SIRT1

Cell proliferation, migration,
invasion, apoptosis [71,83]

miR-96b Down K-RAS KRAS, AKT Cell proliferation, migration,
invasion, apoptosis [80]
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Table 1. Cont.

miRs Regulation in
PDAC

Signaling Pathways
Involved Target Genes Functional Involvement in

PDAC References

miR-107 Up Cell cycle
Cyclin

D1-dependent
kinase

Cell proliferation [114]

miR-126 Down K-RAS KRAS Cell proliferation, migration,
invasion, apoptosis [81]

miR-130b Down JAK–STAT STAT3 Cell proliferation, invasion [54,56]

miR-132 Up P16 Rb1 G2/M cell cycle arrest, cell
proliferation [129]

miR-141 Down DNA methylation YAP1, MAP4K4 Tissue homeostasis, organ
size, regeneration [144]

miR-143 Down K-RAS KRAS, MMP-2,
MMP1 Tumor growth [86]

miR-144 Down NOTCH PRR11 EMT [103]

miR-145 Down K-RAS
NOTCH KRAS Tumor growth, EMT [86,103]

miR-146a Down EGFR EGFR, NF-κB,
IRAK-1 Increased tumor growth [93]

miR-148a Down Cell cycle CDC25B
Cell proliferation,

differentiation, invasion,
migration

[121]

miR-148b Down DNA methylation DNMT1, AMPKa1
Cell proliferation,

differentiation, invasion,
migration

[143]

miR-150 Up HER-2/neu MUC4, IGF-1R Invasion, migration [45]

miR-152 Down DNA methylation DNMT1
Cell proliferation,

differentiation, invasion,
migration

[143]

miR-155 Up JAK–STAT
Tp53

SOCS1
TP53-induced

nuclear protein 1
gene, FOXO3a,

RHOA, SMAD1/5,
ZNF652

Cell invasion, migration,
metastasis, generation of
reactive oxygen species

[54,57,73]

miR-181a Up PI3K–AKT PTEN Migration [61]

miR-192 Up Cell Cycle Cyclin D1, cyclin
D2, CDK4 Cell proliferation [115]

miR-193b Down Cell Cycle KRAS G1-phase arrest [118]

miR-200 Up NOTCH Jagged1,
Maml2,Maml3 EMT [102]

miR-200c Down EGFR MIG6, EP300 Invasion, migration [95]

miR-203 Up Tp53 p53 Cell proliferation, migration,
invasion, apoptosis [72]

miR-206 Down K-RAS KRAS, ANXA2

Decrease in proangiogenic
and proinflammatory

mediators, tumor growth,
progression

[83,84]
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Table 1. Cont.

miRs Regulation in
PDAC

Signaling Pathways
Involved Target Genes Functional Involvement in

PDAC References

miR-212 Up P16
Hedgehog Rb1 G2/M cell cycle arrest, cell

proliferation [107,129]

miR-216a Down JAK–STAT JAK2 Cell proliferation, invasion [54,55]

miR-217 Down K-RAS, DNA methylation KRAS, SIRT1

Cell proliferation, migration,
invasion, apoptosis,

metabolism, DNA damage,
stress responses, genome

stability, cell survival

[79,145]

miR-220c Up PI3K–AKT MUC4 EMT [54]

miR-221 Up PI3K–AKT

Cdk4, p16, E2F,
CDKN1B, MMP-2,

MMP-9, PUMA,
PTEN, MDM2,

ICAM-1, P27, BIM,
SOD2, STAT5A

Proliferation, migration [60]

miR-222 Up
Tp53
P16

Cell cycle

p53, p27, p57,
MMP2, MMP9,
PUMA, PTEN,
BIM, MMP1,
SOD2, STAT5

Cell proliferation, migration,
invasion, apoptosis [72,120,128]

miR-223 Up Cell Cycle FBXW7, Cyclin E2
Cell proliferation,

differentiation, invasion,
migration

[11,119]

miR-301a Up Cell Cycle Bim, Bak, Bax,
NF-κB Cell proliferation [116]

miR-375 Down PI3K–AKT PDK1 Cell proliferation, invasion,
migration [54,64]

miR-421 Up TGF-β SMAD4 Cell proliferation, migration,
invasion [46]

miR-424-5p Up HGF–MET SOCS6 Cell proliferation, migration,
survival, EMT [52]

miR-483-3p Up TGF-β SMAD4 Cell proliferation, migration,
invasion [47]

miR-494 Down TGF-β FOXM1
Cell proliferation, migration,
invasion, increased resistance

to gemcitabine
[44]

JAK: Janus Kinase; STAT: Signal Transducer And Activator Of Transcription 3; ZEB: Zinc Finger E-Box Binding Homeobox 1; PI3K:
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase; AKT: AKT Serine/Threonine Kinase; BCL2: Apoptosis Regulator; FasL: Fas Ligand;
PTEN: Phosphatase and Tensin Homolog; RECK: Reversion-inducing-cysteine-rich protein with kazal motifs; SPRY2: Sprouty homolog
2; APAF1: Apoptotic Peptidase Activating Factor 1; ARMTL2: Aryl Hydrocarbon Receptor Nuclear Translocator Like; MMP12: Matrix
Metallopeptidase 12; FZD5: Frizzled Class Receptor 5; FRAT2: FRAT Regulator Of WNT Signaling Pathway 2; LRP-6: LDL Receptor
Related Protein 6; Rb1: RB Transcriptional Corepressor 1; MAP4K4: Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4; PRR11:
Proline Rich 11; NF-κB: nuclear factor-kappa B; IRAK-1: Interleukin 1 Receptor Associated Kinase 1; CDC25B: Cell Division Cycle 25B;
DNMT1 DNA Methyltransferase 1; RHOA: Ras Homolog Family Member A; ZNF652: Zinc Finger Protein 652; MAML2/3: Mastermind
Like Transcriptional Coactivator 2/3; MIG6: Mitogen-inducible gene 6; EP300: E1A Binding Protein P300; ANXA2: Annexin A2; E2F1: E2F
Transcription Factor 1; PUMA: p53 upregulated modulator of apoptosis; SOD2: Superoxide Dismutase 2; FBXW7: F-Box And WD Repeat
Domain Containing 7; PDK1: Pyruvate Dehydrogenase Kinase 1.
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3. Involvement of Metabolic Stress in PDAC

Reprogramming of the cellular metabolic system occurs to accommodate the changes
in cellular energy requirements needed during tumorigenesis. Glutamine is pivotal in regu-
lating energy utilization [147–149]. Modifications that increase glutamine metabolism will
attenuate the severity of PDAC. Increased expression and activity of 4-hydroxyphenylpyru-
vate dioxygenase-like protein (HPDL) promotes tumor formation, whereas reductions in
HPDL expression inhibit cell growth [147]. Increased glutamine metabolism also protects
cells from elevated oxidative stress. Numerous reports have discussed the potential for
metabolic stress leading to increased oxidative stress [147,149–153]. Transcription factor
EB (TFEB) has attracted a lot of interest recently for its ability to regulate PDAC growth.
Elevated TFEB in PDAC has been shown to suppress both glutamine and mitochondrial
metabolism [152]. Suppression of glutamine metabolism will lead to nutrient deprivation-
related stress in the cells, increasing oxidative stress and the expression of epidermal
growth factor (EGFR) [154]. Glutamine is not only integral to cellular metabolism, but
also to metastasis. Reductions in glutamine promote the transition from epithelial to mes-
enchymal cells in PDAC, which is regulated by Slug [155]. The E3 ubiquitin ligase, neural
precursor cell-expressed developmentally downregulated gene 4-like (NEDD4L), has been
shown to reduce mitochondrial metabolism and is negatively correlated with glutamine
transporter (ASCT2) expression [154].

The modification of cellular energy metabolism by miRs has been shown for a few
select miRs. The involvement of miR-1291 has been shown to reduce cell growth and
metastasis, and that there can be an interaction between miR-1291, carnitine palmitoyltrans-
ferase, and estrogen receptor α [156]. The involvement of carnitine palmitoyltransferase
1C (CPT1C) in the mitochondrial β-oxidation of fatty acids is important for cell survival.
Low activity of CPT1C results in a negative cellular outcome with increased metabolic and
oxidative stress, decreased cell growth, and dysregulated mitochondria [157]. Increasing
the expression and activity of CPT1C reverses the negative cellular effects.

miR-143 is reported to be differentially expressed in patients following the ketogenic
diet and has been identified as a metabolism-related biomarker [158]. miR-143 is downreg-
ulated in PDAC and associated with cytokine signaling pathways, nutrient metabolism,
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oxidative phosphorylation, and insulin signaling pathways to maintain metabolic home-
ostasis [86,158]. Additional work is needed to further establish connections between miRs
and the metabolic stress process that occurs during tumorigenesis.

4. Angiogenesis and miRs in PDAC

Several previous studies have shown that numerous miRs are correlated to PDAC
angiogenesis. Specifically, miR-34 is considerably downregulated in PDAC, while its
upregulation can affect various biological processes, including angiogenesis, as well as
apoptosis, cell cycle progression, and metastatic potential [101,159]. Guo et al. suggested
that the upregulation of the tumor suppressor miR-410 could cause the inhibition of
angiogenesis in PDAC [160]. It has also been stated that the inhibition of both miR-21
and miR-210 has been linked to the targeting of migration and invasion of PDAC cells
and the suppression of angiogenesis [161]. A further study by Khan et al. reported
that hypoxia-related angiogenic miRs, including miR-21, miR-200c, and miR-199, are
commonly aberrantly expressed in PDAC [162]. In particular, hypoxia can promote PDAC
cell migration, invasion, and angiogenesis in vitro through the induction of miR-21 [163].
Conclusively, miR-221/222 play a crucial role in the migration, invasion, angiogenic
potential, and tumorigenicity of PDAC [164].

5. Conclusions

Understanding the relationship between the function and mechanism of miRs in
PDAC is important as miRs have the potential to be used as novel biomarkers for the early
diagnosis, prognosis, and therapeutic response in PDAC. miR-mediated altered metabolic
mediators may play a crucial role in PDAC development through the dysregulation of sev-
eral cellular functions, including proliferation, apoptosis, metastasis, and chemoresistance.
The examination of these molecules can lead to a better understanding of the underlying
molecular mechanisms that are responsible for the pathogenesis of PDAC. The clarification
of the regulatory role of different miRs may elucidate a functional role in the therapy or
diagnosis of PDACs. This review summarized the involvement of miR-mediated metabolic
mediators and their affected regulatory pathways through modulating different genes that
are responsible for PDAC progression. Further clinical studies are needed to identify the
complex mechanisms and associations of miRs in PDAC.
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26. Wallace, D.R.; Buha-Ðord̄ević, A.; Benton, A. Toxicity of organic and inorganic nickel in pancreatic cell cultures: Comparison to
cadmium. Arh. za Farm. 2020, 70, 344–359. [CrossRef]

27. Bartel, D.P. MicroRNAs. Cell 2004, 116, 281–297. [CrossRef]
28. Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 2015, 15, 321–333. [CrossRef]
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