6,248 research outputs found

    Can closure of live poultry markets halt the spread of H7N9?

    Get PDF

    Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control

    Get PDF
    Zambia has been experiencing low livestock productivity as well as trade restrictions owing to the occurrence of foot and mouth disease (FMD), but little is known about the epidemiology of the disease in these endemic settings. The fundamental questions relate to the spatio-temporal distribution of FMD cases and what determines their occurrence. A retrospective review of FMD cases in Zambia from 1981 to 2012 was conducted using geographical information systems and the SaTScan software package. Information was collected from peer-reviewed journal articles, conference proceedings, laboratory reports, unpublished scientific reports and grey literature. A space–time permutation probability model using a varying time window of one year was used to scan for areas with high infection rates. The spatial scan statistic detected a significant purely spatial cluster around the Mbala–Isoka area between 2009 and 2012, with secondary clusters in Sesheke–Kazungula in 2007 and 2008, the Kafue flats in 2004 and 2005 and Livingstone in 2012. This study provides evidence of the existence of statistically significant FMD clusters and an increase in occurrence in Zambia between 2004 and 2012. The identified clusters agree with areas known to be at high risk of FMD. The FMD virus transmission dynamics and the heterogeneous variability in risk within these locations may need further investigation

    Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission

    Get PDF
    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection

    epidemix-An interactive multi-model application for teaching and visualizing infectious disease transmission

    Get PDF
    Mathematical models of disease transmission are used to improve our understanding of patterns of infection and to identify factors influencing them. During recent public and animal health crises, such as pandemic influenza, Ebola, Zika, foot-and-mouth disease, models have made important contributions in addressing policy questions, especially through the assessment of the trajectory and scale of outbreaks, and the evaluation of control interventions. However, their mathematical formulation means that they may appear as a “black box” to those without the appropriate mathematical background. This may lead to a negative perception of their utility for guiding policy, and generate expectations, which are not in line with what these models can deliver. It is therefore important for policymakers, as well as public health and animal health professionals and researchers who collaborate with modelers and use results generated by these models for policy development or research purpose, to understand the key concepts and assumptions underlying these models. The software application epidemix (http://shinyapps.rvc.ac.uk) presented here aims to make mathematical models of disease transmission accessible to a wider audience of users. By developing a visual interface for a suite of eight models, users can develop an understanding of the impact of various modelling assumptions – especially mixing patterns – on the trajectory of an epidemic and the impact of control interventions, without having to directly deal with the complexity of mathematical equations and programming languages. Models are compartmental or individual-based, deterministic or stochastic, and assume homogeneous or heterogeneous-mixing patterns (with the probability of transmission depending on the underlying structure of contact networks, or the spatial distribution of hosts). This application is intended to be used by scientists teaching mathematical modelling short courses to non-specialists – including policy makers, public and animal health professionals and students – and wishing to develop hands-on practicals illustrating key concepts of disease dynamics and control

    Randomised field trial to evaluate serological response after foot-and-mouth disease vaccination in Turkey

    Get PDF
    AbstractDespite years of biannual mass vaccination of cattle, foot-and-mouth disease (FMD) remains uncontrolled in Anatolian Turkey. To evaluate protection after mass vaccination we measured post-vaccination antibodies in a cohort of cattle (serotypes O, A and Asia-1). To obtain results reflecting typical field protection, participants were randomly sampled from across Central and Western Turkey after routine vaccination. Giving two-doses one month apart is recommended when cattle are first vaccinated against FMD. However, due to cost and logistics, this is not routinely performed in Turkey, and elsewhere. Nested within the cohort, we conducted a randomised trial comparing post-vaccination antibodies after a single-dose versus a two-dose primary vaccination course.Four to five months after vaccination, only a third of single-vaccinated cattle had antibody levels above a threshold associated with protection. A third never reached this threshold, even at peak response one month after vaccination. It was not until animals had received three vaccine doses in their lifetime, vaccinating every six months, that most (64% to 86% depending on serotype) maintained antibody levels above this threshold. By this time cattle would be >20 months old with almost half the population below this age. Consequently, many vaccinated animals will be unprotected for much of the year. Compared to a single-dose, a primary vaccination course of two-doses greatly improved the level and duration of immunity. We concluded that the FMD vaccination programme in Anatolian Turkey did not produce the high levels of immunity required. Higher potency vaccines are now used throughout Turkey, with a two-dose primary course in certain areas.Monitoring post-vaccination serology is an important component of evaluation for FMD vaccination programmes. However, consideration must be given to which antigens are present in the test, the vaccine and the field virus. Differences between these antigens affect the relationship between antibody titre and protection

    Critical current diffraction pattern of SIFS Josephson junctions with step-like F-layer

    Full text link
    We present the latest generation of superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses d1d_1 and d2d_2 in both halves were varied to obtain different combinations of positive and negative critical current densities jc,1j_{c,1} and jc,2j_{c,2}. The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.Comment: 7 pages, 3 figure

    Spatial multi-criteria decision analysis to predict suitability for African swine fever endemicity in Africa

    Get PDF
    Background African swine fever (ASF) is endemic in several countries of Africa and may pose a risk to all pig producing areas on the continent. Official ASF reporting is often rare and there remains limited awareness of the continent-wide distribution of the disease. In the absence of accurate ASF outbreak data and few quantitative studies on the epidemiology of the disease in Africa, we used spatial multi-criteria decision analysis (MCDA) to derive predictions of the continental distribution of suitability for ASF persistence in domestic pig populations as part of sylvatic or domestic transmission cycles. In order to incorporate the uncertainty in the relative importance of different criteria in defining suitability, we modelled decisions within the MCDA framework using a stochastic approach. The predictive performance of suitability estimates was assessed via a partial ROC analysis using ASF outbreak data reported to the OIE since 2005. Results Outputs from the spatial MCDA indicate that large areas of sub-Saharan Africa may be suitable for ASF persistence as part of either domestic or sylvatic transmission cycles. Areas with high suitability for pig to pig transmission (‘domestic cycles’) were estimated to occur throughout sub-Saharan Africa, whilst areas with high suitability for introduction from wildlife reservoirs (‘sylvatic cycles’) were found predominantly in East, Central and Southern Africa. Based on average AUC ratios from the partial ROC analysis, the predictive ability of suitability estimates for domestic cycles alone was considerably higher than suitability estimates for sylvatic cycles alone, or domestic and sylvatic cycles in combination. Conclusions This study provides the first standardised estimates of the distribution of suitability for ASF transmission associated with domestic and sylvatic cycles in Africa. We provide further evidence for the utility of knowledge-driven risk mapping in animal health, particularly in data-sparse environments.</p

    Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain

    Get PDF
    African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R 0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R 0 is 2·8 [95% confidence interval (CI) 1·3–4·8] within a pen and 1·4 (95% CI 0·6–2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.ISSN:0950-2688ISSN:1469-440
    corecore