204 research outputs found

    Molecular analysis of the patatin gene familiy of potato (Solanum tuberosum L.)

    Get PDF
    Imperial Users onl

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis

    Get PDF
    SummaryIn animal fertilization, multiple sperms typically arrive at an egg cell to “win the race” for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell [1, 2]. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube [1]. Here we report a fertilization recovery phenomenon in flowering plants that actively rescues the failure of fertilization of the first mutant pollen tube by attracting a second, functional pollen tube. Wild-type (WT) ovules of Arabidopsis thaliana frequently (∼80%) accepted two pollen tubes when entered by mutant pollen defective in gamete fertility. In typical flowering plants, two synergid cells on the side of the egg cell attract pollen tubes [3–5], one of which degenerates upon pollen tube discharge [3, 6]. By semi-in vitro live-cell imaging [7, 8] we observed that fertilization was rescued when the second synergid cell accepted a WT pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and employ a fertilization recovery mechanism to maximize the likelihood of successful seed set

    The tobacco MAP215/Dis1-family protein TMBP200 is required for the functional organization of microtubule arrays during male germline establishment

    Get PDF
    The haploid microspore division during pollen development in flowering plants is an intrinsically asymmetric division which establishes the male germline for sexual reproduction. Arabidopsis gem1 mutants lack the male germline as a result of disturbed microspore polarity, division asymmetry, and cytokinesis and represent loss-of-function mutants in MOR1/GEM1, a plant orthologue of the conserved MAP215/Dis1 microtubule associated protein (MAP) family. This provides genetic evidence for the role of MAP215/Dis1 in the organization of gametophytic microtubule arrays, but it has remained unknown how microtubule arrays are affected in gem1 mutant microspores. Here, novel male gametophytic microtubule-reporter Nicotiana tabacum plants were constructed, expressing a green fluorescent protein-α-TUBULIN fusion protein (GFP-TUA6) under the control of a microspore-specific promoter. These plants allow effective visualization of all major male gametophytic microtubule arrays and provide useful tools to study the regulation of microtubule arrays by MAPs and other effectors. Depletion of TMBP200, a tobacco homologue of MOR1/GEM1 in gametophytic microtubule-reporter plants using microspore-targeted RNA interference, induced defects in microspore polarity, division asymmetry and cytokinesis that were associated with striking defects in phragmoplast position, orientation, and structure. Our observations further reveal a requirement for TMBP200 in gametophytic spindle organization and a novel role in spindle position and orientation in polarized microspores. These results provide direct evidence for the function of MAP215/Dis1 family protein TMBP200 in the organization of microtubule arrays critical for male germline formation in plants

    Transcriptome analysis of haploid male gametophyte development in Arabidopsis

    Get PDF
    BACKGROUND: The haploid male gametophyte generation of flowering plants consists of two- or three-celled pollen grains. This functional specialization is thought to be a key factor in the evolutionary success of flowering plants. Moreover, pollen ontogeny is also an attractive model in which to dissect cellular networks that control cell growth, asymmetric cell division and cellular differentiation. Our objective, and an essential step towards the detailed understanding of these processes, was to comprehensively define the male haploid transcriptome throughout development. RESULTS: We have developed staged spore isolation procedures for Arabidopsis and used Affymetrix ATH1 genome arrays to identify a total of 13,977 male gametophyte-expressed mRNAs, 9.7% of which were male-gametophyte-specific. The transition from bicellular to tricellular pollen was accompanied by a decline in the number of diverse mRNA species and an increase in the proportion of male gametophyte-specific transcripts. Expression profiles of regulatory proteins and distinct clusters of coexpressed genes were identified that could correspond to components of gametophytic regulatory networks. Moreover, integration of transcriptome and experimental data revealed the early synthesis of translation factors and their requirement to support pollen tube growth. CONCLUSIONS: The progression from proliferating microspores to terminally differentiated pollen is characterized by large-scale repression of early program genes and the activation of a unique late gene-expression program in maturing pollen. These data provide a quantum increase in knowledge concerning gametophytic transcription and lay the foundations for new genomic-led studies of the regulatory networks and cellular functions that operate to specify male gametophyte development

    Fluorescence-Tagged Transgenic Lines Reveal Genetic Defects in Pollen Growth—Application to the Eif3 Complex

    Get PDF
    BACKGROUND: Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation. CONCLUSION/SIGNIFICANCE: eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis

    DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis.

    Get PDF
    Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression

    Differential Expression of Rubisco in Sporophytes and Gametophytes of Some Marine Macroalgae

    Get PDF
    Rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase), a key enzyme of photosynthetic CO2 fixation, is one of the most abundant proteins in both higher plants and algae. In this study, the differential expression of Rubisco in sporophytes and gametophytes of four seaweed species — Porphyra yezoensis, P. haitanensis, Bangia fuscopurpurea (Rhodophyte) and Laminaria japonica (Phaeophyceae) — was studied in terms of the levels of transcription, translation and enzyme activity. Results indicated that both the Rubisco content and the initial carboxylase activity were notably higher in algal gametophytes than in the sporophytes, which suggested that the Rubisco content and the initial carboxylase activity were related to the ploidy of the generations of the four algal species

    NtGNL1 Plays an Essential Role in Pollen Tube Tip Growth and Orientation Likely via Regulation of Post-Golgi Trafficking

    Get PDF
    Background: Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking. Methodology/Principal Findings: To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly inhibited. Cytological observations revealed that both timing and behavior of endocytosis was disrupted, and endosome trafficking to prevacuolar compartments (PVC) or multivesicular bodies (MVB) was altered in pollen tube tips. Moreover, NtGNL1 seemed to partially overlap with Golgi bodies, but clearly colocalized with putative late endosome compartments. We also observed that in such pollen tubes, the Golgi apparatus disassembled and fused with the endoplasmic reticulum, indicating abnormal post-Golgi trafficking. During this process, actin organization was also remodeled. Conclusions/Significance: Thus, we revealed that NtGNL1 is essential for pollen tube growth and orientation and it likel
    corecore