165 research outputs found

    Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis.

    Get PDF
    BACKGROUND: Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis. METHODS: We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy. FINDINGS: In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate. INTERPRETATION: Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions. FUNDING: UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council

    Glycerol Monolaurate and Dodecylglycerol Effects on Staphylococcus aureus and Toxic Shock Syndrome Toxin-1 In Vitro and In Vivo

    Get PDF
    BACKGROUND:Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability. METHODOLOGY/PRINCIPAL FINDINGS:Antimicrobial effects of GML and DDG (0 to 500 microg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3x10(8) CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-alpha (TNF-alpha) concentrations and mortality over 7 days. DDG (50 and 100 microg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-alpha at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively). CONCLUSIONS/SIGNIFICANCE:These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-alpha, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Provenance signature of changing plate boundary conditions along a convergent margin: Detrital Record of Spreading-Ridge and Flat-Slab Subduction Processes, Cenozoic Forearc Basins, Alaska

    No full text
    Cenozoic strata from forearc basins in southern Alaska record deposition related to two different types of shallow subduction: Paleocene-Eocene spreading-ridge subduction and Oligocene-Recent oceanic plateau subduction. We use detrital zircon geochronology (n = 1368) and clast composition of conglomerate (n = 1068) to reconstruct the upper plate response to these two subduction events as recorded in forearc basin strata and modern river sediment. Following spreading-ridge subduction, the presence of Precambrian and Paleozoic detrital zircon ages in middle Eocene-lower Miocene arc-margin strata and Early Cretaceous ages in lower Miocene accretionary prism-margin strata indicates that sediment was transported to the basin from older terranes in interior Alaska and from the exhumed eastern part of the Cretaceous forearc system, respectively. By middle-late Miocene time, diminished abundances of these populations reflect shallow subduction of an oceanic plateau and associated exhumation that resulted in an overall contraction of the catchment area for the forearc depositional system. In the southern Alaska forearc basin system, upper plate processes associated with subduction of a spreading ridge resulted in an abrupt increase in the diversity of detrital zircon ages that reflect new sediment sources from far inboard regions. The detrital zircon signatures from strata deposited during oceanic plateau subduction record exhumation of the region above the flat slab, with the youngest detrital zircon population reflecting the last period of major arc activity prior to insertion of the flat slab. This study provides a foundation for new tectonic and provenance models of forearc basins that have been modified by shallow subduction processes, and may help to facilitate the use of U-Pb dating of detrital zircons to better understand basins that formed under changing geodynamic plate boundary conditions
    corecore