1,197 research outputs found
Number fields and function fields:Coalescences, contrasts and emerging applications
The similarity between the density of the primes and the density of irreducible polynomials defined over a finite field of q elements was first observed by Gauss. Since then, many other analogies have been uncovered between arithmetic in number fields and in function fields defined over a finite field. Although an active area of interaction for the past half century at least, the language and techniques used in analytic number theory and in the function field setting are quite different, and this has frustrated interchanges between the two areas. This situation is currently changing, and there has been substantial progress on a number of problems stimulated by bringing together ideas from each field. We here introduce the papers published in this Theo Murphy meeting issue, where some of the recent developments are explained
The two-component giant radio halo in the galaxy cluster Abell 2142
We report on a spectral study at radio frequencies of the giant radio halo in
A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is
not a major merger and the presence of a giant radio halo is somewhat
surprising. We performed deep radio observations with the GMRT at 608 MHz, 322
MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality
images at all frequencies in a wide range of resolutions. The radio halo is
well detected at all frequencies and extends out to the most distant cold front
in A2142. We studied the spectral index in two regions: the central part of the
halo and a second region in the direction of the most distant south-eastern
cold front, selected to follow the bright part of the halo and X-ray emission.
We complemented our observations with a preliminary LOFAR image at 118 MHz and
with the re-analysis of archival VLA data at 1.4 GHz. The two components of the
radio halo show different observational properties. The central brightest part
has higher surface brightess and a spectrum whose steepness is similar to those
of the known radio halos, i.e. . The ridge, which fades into the larger scale emission, is broader in
size and has considerably lower surface brightess and a moderately steeper
spectrum, i.e. . We propose that
the brightest part of the radio halo is powered by the central sloshing in
A2142, similar to what has been suggested for mini-halos, or by secondary
electrons generated by hadronic collisions in the ICM. On the other hand, the
steeper ridge may probe particle re-acceleration by turbulence generated either
by stirring the gas and magnetic fields on a larger scale or by less energetic
mechanisms, such as continuous infall of galaxy groups or an off-axis merger.Comment: 18 pages, 10 figures, 4 tables - A&A, accepte
The Three-Dimensional Structure of Interior Ejecta in Cassiopeia A at High Spectral Resolution
We used the Spitzer Space Telescope's Infrared Spectrograph to create a high
resolution spectral map of the central region of the Cassiopeia A supernova
remnant, allowing us to make a Doppler reconstruction of its 3D structure. The
ejecta responsible for this emission have not yet encountered the remnant's
reverse shock or the circumstellar medium, making it an ideal laboratory for
exploring the dynamics of the supernova explosion itself. We observe that the
O, Si, and S ejecta can form both sheet-like structures as well as filaments.
Si and O, which come from different nucleosynthetic layers of the star, are
observed to be coincident in velocity space in some regions, and separated by
500 km/s or more in others. Ejecta traveling toward us are, on average, ~900
km/s slower than the material traveling away from us. We compare our
observations to recent supernova explosion models and find that no single model
can simultaneously reproduce all the observed features. However, models of
different supernova explosions can collectively produce the observed geometries
and structures of the interior emission. We use the results from the models to
address the conditions during the supernova explosion, concentrating on
asymmetries in the shock structure. We also predict that the back surface of
Cassiopeia A will begin brightening in ~30 years, and the front surface in ~100
years.Comment: 35 pages, 16 figures, accepted to Ap
The stripping of a galaxy group diving into the massive cluster A2142
Structure formation in the current Universe operates through the accretion of
group-scale systems onto massive clusters. The detection and study of such
accreting systems is crucial to understand the build-up of the most massive
virialized structures we see today. We report the discovery with XMM-Newton of
an irregular X-ray substructure in the outskirts of the massive galaxy cluster
Abell 2142. The tip of the X-ray emission coincides with a concentration of
galaxies. The bulk of the X-ray emission of this substructure appears to be
lagging behind the galaxies and extends over a projected scale of at least 800
kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of
~4 lower than the surrounding medium and is typical of the virialized plasma of
a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret
this structure as a galaxy group in the process of being accreted onto the main
dark-matter halo. The X-ray structure trailing behind the group is due to gas
stripped from its original dark-matter halo as it moves through the
intracluster medium (ICM). This is the longest X-ray trail reported to date.
For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has
been surviving in the presence of the hot ICM for at least 600 Myr, which
exceeds the Spitzer conduction timescale in the medium by a factor of >~400.
Such a strong suppression of conductivity is likely related to a tangled
magnetic field with small coherence length and to plasma microinstabilities.
The long survival time of the low-entropy intragroup medium suggests that the
infalling material can eventually settle within the core of the main cluster.Comment: 11 pages, 7 figures, accepted for publication in A&
The shape of invasion perclation clusters in random and correlated media
The shape of two-dimensional invasion percolation clusters are studied
numerically for both non-trapping (NTIP) and trapping (TIP) invasion
percolation processes. Two different anisotropy quantifiers, the anisotropy
parameter and the asphericity are used for probing the degree of anisotropy of
clusters. We observe that in spite of the difference in scaling properties of
NTIP and TIP, there is no difference in the values of anisotropy quantifiers of
these processes. Furthermore, we find that in completely random media, the
invasion percolation clusters are on average slightly less isotropic than
standard percolation clusters. Introducing isotropic long-range correlations
into the media reduces the isotropy of the invasion percolation clusters. The
effect is more pronounced for the case of persisting long-range correlations.
The implication of boundary conditions on the shape of clusters is another
subject of interest. Compared to the case of free boundary conditions, IP
clusters of conventional rectangular geometry turn out to be more isotropic.
Moreover, we see that in conventional rectangular geometry the NTIP clusters
are more isotropic than TIP clusters
Deep Chandra observations of the stripped galaxy group falling into Abell 2142
In the local Universe, the growth of massive galaxy clusters mainly operates
through the continuous accretion of group-scale systems. The infalling group in
Abell 2142 is the poster child of such an accreting group, and as such, it is
an ideal target to study the astrophysical processes induced by structure
formation. We present the results of a deep (200 ks) observation of this
structure with Chandra, which highlights the complexity of this system in
exquisite detail. In the core of the group, the spatial resolution of Chandra
reveals the presence of a leading edge and a complex AGN-induced activity. The
morphology of the stripped gas tail appears straight in the innermost 250 kpc,
suggesting that magnetic draping efficiently shields the gas from its
surroundings. However, beyond kpc from the core, the tail flares and
the morphology becomes strongly irregular, which could be explained by a
breaking of the drape, e.g. because of turbulent motions. The power spectrum of
surface-brightness fluctuations is relatively flat (),
which indicates that thermal conduction is strongly inhibited even beyond the
region where magnetic draping is effective. The amplitude of density
fluctuations in the tail is consistent with a mild level of turbulence with a
Mach number . Overall, our results show that the processes
leading to the thermalization and mixing of the infalling gas are slow and
relatively inefficient.Comment: Accepted for publication in A&
Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope
We performed Spitzer Infrared Spectrograph mapping observations covering
nearly the entire extent of the Cassiopeia A supernova remnant (SNR), producing
mid-infrared (5.5-35 micron) spectra every 5-10". Gas lines of Ar, Ne, O, Si, S
and Fe, and dust continua were strong for most positions. We identify three
distinct ejecta dust populations based on their continuum shapes. The dominant
dust continuum shape exhibits a strong peak at 21 micron. A line-free map of 21
micron-peak dust made from the 19-23 micron range closely resembles the [Ar
II], [O IV], and [Ne II] ejecta-line maps implying that dust is freshly formed
in the ejecta. Spectral fitting implies the presence of SiO2, Mg
protosilicates, and FeO grains in these regions. The second dust type exhibits
a rising continuum up to 21 micron and then flattens thereafter. This ``weak 21
micron'' dust is likely composed of Al2O3 and C grains. The third dust
continuum shape is featureless with a gently rising spectrum and is likely
composed of MgSiO3 and either Al2O3 or Fe grains. Using the least massive
composition for each of the three dust classes yields a total mass of 0.02
Msun. Using the most-massive composition yields a total mass of 0.054 Msun. The
primary uncertainty in the total dust mass stems from the selection of the dust
composition necessary for fitting the featureless dust as well as 70 micron
flux. The freshly formed dust mass derived from Cas A is sufficient from SNe to
explain the lower limit on the dust masses in high redshift galaxies.Comment: 8 figures: Accepted for the publication in Ap
Theory of monolayers with boundaries: Exact results and Perturbative analysis
Domains and bubbles in tilted phases of Langmuir monolayers contain a class
of textures knows as boojums. The boundaries of such domains and bubbles may
display either cusp-like features or indentations. We derive analytic
expressions for the textures within domains and surrounding bubbles, and for
the shapes of the boundaries of these regions. The derivation is perturbative
in the deviation of the bounding curve from a circle. This method is not
expected to be accurate when the boundary suffers large distortions, but it
does provide important clues with regard to the influence of various energetic
terms on the order-parameter texture and the shape of the domain or bubble
bounding curve. We also look into the effects of thermal fluctuations, which
include a sample-size-dependent effective line tension.Comment: replaced with published version, 21 pages, 16 figures include
The Three-Dimensional Structure of Cassiopeia A
We used the Spitzer Space Telescope's Infrared Spectrograph to map nearly the
entire extent of Cassiopeia A between 5-40 micron. Using infrared and Chandra
X-ray Doppler velocity measurements, along with the locations of optical ejecta
beyond the forward shock, we constructed a 3-D model of the remnant. The
structure of Cas A can be characterized into a spherical component, a tilted
thick disk, and multiple ejecta jets/pistons and optical fast-moving knots all
populating the thick disk plane. The Bright Ring in Cas A identifies the
intersection between the thick plane/pistons and a roughly spherical reverse
shock. The ejecta pistons indicate a radial velocity gradient in the explosion.
Some ejecta pistons are bipolar with oppositely-directed flows about the
expansion center while some ejecta pistons show no such symmetry. Some ejecta
pistons appear to maintain the integrity of the nuclear burning layers while
others appear to have punched through the outer layers. The ejecta pistons
indicate a radial velocity gradient in the explosion. In 3-D, the Fe jet in the
southeast occupies a "hole" in the Si-group emission and does not represent
"overturning", as previously thought. Although interaction with the
circumstellar medium affects the detailed appearance of the remnant and may
affect the visibility of the southeast Fe jet, the bulk of the symmetries and
asymmetries in Cas A are intrinsic to the explosion.Comment: Accepted to ApJ. 54 pages, 21 figures. For high resolution figures
and associated mpeg movie and 3D PDF files, see
http://homepages.spa.umn.edu/~tdelaney/pape
- …