12,215 research outputs found

    Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    Get PDF
    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach

    Bounded Model Checking of State-Space Digital Systems: The Impact of Finite Word-Length Effects on the Implementation of Fixed-Point Digital Controllers Based on State-Space Modeling

    Full text link
    The extensive use of digital controllers demands a growing effort to prevent design errors that appear due to finite-word length (FWL) effects. However, there is still a gap, regarding verification tools and methodologies to check implementation aspects of control systems. Thus, the present paper describes an approach, which employs bounded model checking (BMC) techniques, to verify fixed-point digital controllers represented by state-space equations. The experimental results demonstrate the sensitivity of such systems to FWL effects and the effectiveness of the proposed approach to detect them. To the best of my knowledge, this is the first contribution tackling formal verification through BMC of fixed-point state-space digital controllers.Comment: International Symposium on the Foundations of Software Engineering 201

    Force-extension relation of cross-linked anisotropic polymer networks

    Get PDF
    Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force-extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entropic, independent of the bending rigidity of the chains. Cross-links enhance the differential stretching stiffness of the bundle. For hard cross-links, the cross-link contribution to the force-extension relation scales inversely proportional to the force. Its dependence on the cross-link density, close to the gelation transition, is the same as that of the shear modulus. The qualitative behavior is captured by a toy model of two chains with a single cross-link in the middle.Comment: 7 pages, 4 figure

    Nonlinear modes in the harmonic PT-symmetric potential

    Full text link
    We study the families of nonlinear modes described by the nonlinear Schr\"odinger equation with the PT-symmetric harmonic potential x22iαxx^2-2i\alpha x. The found nonlinear modes display a number of interesting features. In particular, we have observed that the modes, bifurcating from the different eigenstates of the underlying linear problem, can actually belong to the same family of nonlinear modes. We also show that by proper adjustment of the coefficient α\alpha it is possible to enhance stability of small-amplitude and strongly nonlinear modes comparing to the well-studied case of the real harmonic potential.Comment: 7 pages, 2 figures; accepted to Phys. Rev.

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021

    High rate continuous synthesis of nanocrystalline materials in a colliding vapor stream of microdroplets

    Get PDF
    Progress in nanotechnology is driving the need of large scale synthesis of functional nanomaterials. The lack of a workforce trained on process control and scale-up of nanomaterials manufacturing, the gap between laboratories and economically practical nanofabrication and the funding strain on the survivability of startup companies all contribute to the difficulties in scaling up nanotechnologies and their commercialization [1,2]. We report here a high rate continuous synthesis of functional inorganic nanomaterials using colliding vapor stream of reagents microdroplets

    Capillary-gravity waves: The effect of viscosity on the wave resistance

    Full text link
    The effect of viscosity on the wave resistance experienced by a 2d perturbation moving at uniform velocity over the free surface of a fluid is investigated. The analysis is based on Rayleigh's linearized theory of capillary-gravity waves. It is shown in particular that the wave resistance remains bounded as the velocity of the perturbation approches the minimun phase speed, unlike what is predicted by the inviscid theory.Comment: Europhysics Letters, in pres

    High rate continuous synthesis of nanocrystalline materials in a colliding vapor stream of microdroplets

    Get PDF
    Progress in nanotechnology is driving the need of large scale synthesis of functional nanomaterials. The lack of a workforce trained on process control and scale-up of nanomaterials manufacturing, the gap between laboratories and economically practical nanofabrication and the funding strain on the survivability of startup companies all contribute to the difficulties in scaling up nanotechnologies and their commercialization [1,2]. We report here a high rate continuous synthesis of functional inorganic nanomaterials using colliding vapor stream of reagents microdroplets

    A Modified Approach to Single-Spin Detection Using Magnetic Resonance Force Microscopy

    Full text link
    The magnetic moment of a single spin interacting with a cantilever in magnetic resonance force microscopy (MRFM) experiences quantum jumps in orientation rather than smooth oscillations. These jumps cannot be detected by a conventional MRFM based on observation of driven resonant oscillations of a cantilever. In this paper, we propose a method which will allow detection of the magnetic signal from a single spin using a modification of a conventional MRFM. We estimate the opportunity to detect the magnetic signal from a single proton.Comment: 4 pages LaTex, 4 figures in GIF forma

    Collisionless Magnetic Reconnection via Alfven Eigenmodes

    Full text link
    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with the in situ measurement of the reconnection-associated Hall fields
    corecore