3,918 research outputs found

    Spatial Structure of Ion Beams in an Expanding Plasma

    Full text link
    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas

    Higher-Order Probabilistic Adversarial Computations: {C}ategorical Semantics and Program Logics

    Get PDF

    The Bolocam 1.1 mm Lockman Hole Galaxy Survey: SHARC II 350 micron Photometry and Implications for Spectral Models, Dust Temperatures, and Redshift Estimation

    Get PDF
    We present 350 micron photometry of all 17 galaxy candidates in the Lockman Hole detected in a 1.1 mm Bolocam survey. Several of the galaxies were previously detected at 850 microns, at 1.2 mm, in the infrared by Spitzer, and in the radio. Nine of the Bolocam galaxy candidates were detected at 350 microns and two new candidates were serendipitously detected at 350 microns (bringing the total in the literature detected in this way to three). Five of the galaxies have published spectroscopic redshifts, enabling investigation of the implied temperature ranges and a comparison of photometric redshift techniques. Lambda = 350 microns lies near the spectral energy distribution peak for z = 2.5 thermally emitting galaxies. Thus, luminosities can be measured without extrapolating to the peak from detection wavelengths of lambda > 850 microns. Characteristically, the galaxy luminosities lie in the range 1.0 - 1.2 x 10^13 L_solar, with dust temperatures in the range of 40 K to 70 K, depending on the choice of spectral index and wavelength of unit optical depth. The implied dust masses are 3 - 5 x 10^8 M_solar. We find that the far-infrared to radio relation for star-forming ULIRGs systematically overpredicts the radio luminosities and overestimates redshifts on the order of Delta z ~ 1, whereas redshifts based on either on submillimeter data alone or the 1.6 micron stellar bump and PAH features are more accurate.Comment: In Press (to appear in Astrophysical Journal, ApJ 20 May 2006 v643 1) 47 pages, 10 figures, 4 table

    Deep sequencing of virus derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscape of a plant virus population.

    Get PDF
    RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3′ untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for diversity assessment of within-plant virus population, since they show a highly congruent portrayal of the virus mutational landscape within a plant. The study is an important baseline for future studies of virus population dynamics, for example, during the adaptation to a new host. The comparison of the two virus sequence enrichment techniques, sequencing of virus-derived small interfering RNAs and RNA from purified viral particles, shows the strength of the latter for the detection of recombinant viral genomes and reconstruction of complete consensus viral genome sequence

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap

    Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Get PDF
    We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.Comment: Accepted for publication in ApJ; 35 pages, 10 figures, 5 table

    A status report on the observability of cosmic bubble collisions

    Full text link
    In the picture of eternal inflation as driven by a scalar potential with multiple minima, our observable universe resides inside one of many bubbles formed from transitions out of a false vacuum. These bubbles necessarily collide, upsetting the homogeneity and isotropy of our bubble interior, and possibly leading to detectable signatures in the observable portion of our bubble, potentially in the Cosmic Microwave Background or other precision cosmological probes. This constitutes a direct experimental test of eternal inflation and the landscape of string theory vacua. Assessing this possibility roughly splits into answering three questions: What happens in a generic bubble collision? What observational effects might be expected? How likely are we to observe a collision? In this review we report the current progress on each of these questions, improve upon a few of the existing results, and attempt to lay out directions for future work.Comment: Review article; comments very welcome. 24 pages + 4 appendices; 19 color figures. (Revised version adds two figures, minor edits.

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure
    • …
    corecore