1,051 research outputs found

    Empirical tests of natural selection-based evolutionary accounts of ADHD : a systematic review

    Get PDF
    Objective ADHD is a prevalent and highly heritable mental disorder associated with significant impairment, morbidity and increased rates of mortality. This combination of high prevalence and high morbidity/mortality seen in ADHD and other mental disorders presents a challenge to natural selection-based models of human evolution. Several hypotheses have been proposed in an attempt to resolve this apparent paradox. The aim of this study was to review the evidence for these hypotheses. Methods We conducted a systematic review of the literature on empirical investigations of natural selection-based evolutionary accounts for ADHD in adherence with the PRISMA guideline. The PubMed, Embase, and PsycINFO databases were screened for relevant publications, by combining search terms covering evolution/selection with search terms covering ADHD. Results The search identified 790 records. Of these, 15 full-text articles were assessed for eligibility, and three were included in the review. Two of these reported on the evolution of the seven-repeat allele of the ADHD-associated dopamine receptor D4 gene, and one reported on the results of a simulation study of the effect of suggested ADHD-traits on group survival. The authors of the three studies interpreted their findings as favouring the notion that ADHD-traits may have been associated with increased fitness during human evolution. However, we argue that none of the three studies really tap into the core symptoms of ADHD, and that their conclusions therefore lack validity for the disorder. Conclusions This review indicates that the natural selection-based accounts of ADHD have not been subjected to empirical test and therefore remain hypothetical

    An Observational Study of Tidal Synchronization in Solar-Type Binary Stars in the Open Clusters M35 and M34

    Get PDF
    We present rotation periods for the solar-type primary stars in 13 close (a~< 5 AU) single-lined spectroscopic binaries with known orbital periods (P) and eccentricities (e). All binaries are members of the open clusters M35 (150Myr) and M34 (250Myr). The binary orbital parameters and the rotation periods of the primary stars were determined from time-series spectroscopy and time-series photometry, respectively. Knowledge of the ages, orbital periods, and eccentricities of these binaries combined with the rotation periods and masses of their primary stars makes them particularly interesting systems for studying the rates of tidal circularization and synchronization. Our sample of 13 binaries includes six with orbital periods shortward of 13 days (a ~< 0.12 AU). The stars in these binaries orbit sufficiently close that their spins and orbits have evolved toward synchronization and circularization due to tidal interactions. We investigate the degree of tidal synchronization in each binary by comparing the angular rotation velocity of the primary stars to the angular velocity expected if the primary star was synchronized (e=0) or pseudo- synchronized (e>0) with the orbital motion. Of the six closest binaries two with circular orbits are not synchronized, one being subsynchronous and one being supersynchronous, and the primary stars in two binaries with eccentric orbits are rotating more slowly than pseudosynchronism. The remaining two binaries have reached the equilibrium state of both a circularized orbit and synchronized rotation. As a set, the six binaries present a challenging case study for tidal evolution theory, which in particular does not predict subsynchronous rotation in such close systems.Comment: 45 pages, 18 figures, 1 table, accepted for publication in Astrophysical Journa

    PROVE Primary Battery Structure

    Get PDF
    In conjunction with Prototype Vehicle (PROVE) Laboratory, our group designed, manufactured, and tested a prototype structure to house the battery boxes for PROVE’s endurance vehicle. Our structure was designed to support the batteries during normal use, and in the event of a front crash. Our design is comprised of a secondary composite box to house the battery boxes, a bottom plate to affix the secondary box to the chassis floor, a horizontal plate fastened to the chassis, and a brace structure welded to the chassis. From the outset, we chose to use a secondary box, the primary battery boxes must be removable, and we could not directly affix supports. In areas of less certainty, such as the number of support or the strength of support methods, we initially used intuition to make decisions, and allowed room for iteration once we had sufficient analysis later in the project. After developing our initial structure, we created FEM case studies on the full assembly, and used hand calculations to verify our FEM. We were most concerned with the deflection of the front wall in a front 20g crash. We used laminate plate theory in a python algorithm to verify FEM results for the front wall deflection. We found that the brace structure failed in the FEM study. However, we also anticipate redesigning or possibly removing the brace in favor of an additional plate joining the chassis tubes parallel to the front wall. Our team manufactured layups of carbon fiber sandwich panels and L channels for the secondary structure and bottom plate. We successfully integrated the bottom plate and secondary box. However, due to tolerancing issues and discrepancies between the CAD and the physical vehicle our brace structure requires alteration to be integrated. Threaded inserts were manufactured on a lathe and bonded into the panels to allow for them to be integrated onto the chassis. The secondary structure was manufactured smoothly and could fit onto the chassis, which is a great success. One of the two horizontal plates and braces were water jetted and welded respectively, but they need to be redesigned to properly suit their integration. Additionally, our team characterized the Elastic moduli and Poisson’s ratio of carbon fiber material using tensile and strain gauge testing

    Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair

    Get PDF
    Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways

    A Gyrochronology and Microvariability Survey of the Milky Way's Older Stars Using Kepler's Two-Wheels Program

    Full text link
    Even with the diminished precision possible with only two reaction wheels, the Kepler spacecraft can obtain mmag level, time-resolved photometry of tens of thousands of sources. The presence of such a rich, large data set could be transformative for stellar astronomy. In this white paper, we discuss how rotation periods for a large ensemble of single and binary main- sequence dwarfs can yield a quantitative understanding of the evolution of stellar spin-down over time. This will allow us to calibrate rotation-based ages beyond ~1 Gyr, which is the oldest benchmark that exists today apart from the Sun. Measurement of rotation periods of M dwarfs past the fully-convective boundary will enable extension of gyrochronology to the end of the stellar main-sequence, yielding precise ages ({\sigma} ~10%) for the vast majority of nearby stars. It will also help set constraints on the angular momentum evolution and magnetic field generation in these stars. Our Kepler-based study would be supported by a suite of ongoing and future ground-based observations. Finally, we briefly discuss two ancillary science cases, detection of long-period low-mass eclipsing binaries and microvariability in white dwarfs and hot subdwarf B stars that the Kepler Two-Wheels Program would facilitate.Comment: Kepler white pape
    • …
    corecore