40 research outputs found

    An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum

    Full text link
    Mirror matter is a possible dark matter candidate. It is predicted to exist if parity is an unbroken symmetry of the vacuum. The existence of the mirror matter, which in addition to gravity is coupled to our world through photon-mirror photon mixing, would result in orthopositronium (o-Ps) to mirror orthopositronium (o-Ps') oscillations. The experimental signature of this effect is the invisible decay of o-Ps in vacuum. This paper describes the design of the new experiment for a search for the o-Ps -> invisible decay in vacuum with a sensitivity in the branching ratio of Br(o-Ps -> invisible)\simeq 10^{-7}, which is an order of magnitude better than the present limit on this decay mode from the Big Bang Nucleosynthesis. The experiment is based on a high-efficiency pulsed slow positron beam, which is also applicable for other experiments with o-Ps, and (with some modifications) for applied studies. Details of the experimental design and of a new pulsing method, as well as preliminary results on requirements for the pulsed beam components are presented. The effects of o-Ps collisions with the cavity walls as well as the influence of external fields on the o-Ps to o-Ps' oscillation probability are also discussed.Comment: 28 pages, 8 figure

    A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    Get PDF
    Abstract. Measurements of global and diffuse photosynthetically active radiation (PAR) have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs) by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component) occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute to produce small radiative effects on PAR in summer. The cloud radiative effect has been deseasonalized to remove the influence of annual irradiance variations. The monthly mean normalized CRE for global PAR can be well represented by a multi-linear regression with respect to monthly cloud fraction, cloud top pressure, and cloud optical thickness, as determined from satellite MODIS observations. The behaviour of the normalized CRE for diffuse PAR can not be satisfactorily described by a simple multi-linear model with respect to the cloud properties, due to its non-linear dependency, in particular on the cloud optical depth. The analysis suggests that about 77 % of the global PAR interannual variability may be ascribed to cloud variability in winter

    A comparison of Microtops II and satellite ozone measurements in the period 2001-2011

    Get PDF
    Daily average total ozone Microtops measurements obtained during several campaigns conducted from 2001 to 2011 at latitudes from 31 to 68°N and in different seasons are compared with satellite observations. The Microtops ozone is derived using different wavelength combinations (Channel I, 305.5/312.5 nm; Channel II, 312.5/320 nm; and Channel III, 305.5/312.5/320 nm). Satellite data from TOMS, OMI, GOME, and GOME-2 are used in the comparison. The three Microtops channels show a high correlation with the satellite retrievals. Channel I shows the best results and produces a mean bias deviation (MBD) less than 2.14% with respect to TOMS, OMI and GOME. The MBD increases to 3% in the comparison against GOME-2, due to the small number of available data. In addition, the total ozone content provided by Channel I displays the more stable behavior during the ten-year period. The Channel III total ozone shows MBD values smaller than those observed for Channel I. However the Channels II and III present a larger variability and show a larger spread of the data. Consequently, Channel I appears as the best option for long term measurements with Microtops

    Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean

    Get PDF
    Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years 2004–2008, are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80% for aerosol from HFO combustion, versus about 40% for crustal particles), high V and Ni to Si ratios, and values of V<sub>sol</sub>>6 ng m<sup>−3</sup>. Evidence of HFO combustion influence is found in 17% of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions. <br><br> V<sub>sol</sub>, Ni<sub>sol</sub>, and non-sea salt SO<sub>4</sub><sup>2−</sup> (nssSO<sub>4</sub><sup>2−</sup>) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO<sub>4</sub><sup>2−</sup>, from the oxidation of SO<sub>2</sub> (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO<sub>3</sub>, pH1.5). <br><br> Data suggest a characteristic nssSO<sub>4</sub><sup>2−</sup>/V ratio in the range 200–400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is estimated. HFO combustion emissions account, as a summer average, at least for 1.2 μg m<sup>−3</sup>, representing about 30% of the total nssSO<sub>4</sub><sup>2−</sup>, 3.9% of PM<sub>10</sub>, 8% of PM<sub>2.5</sub>, and 11% of PM<sub>1</sub>. Within the used dataset, sulphate from HFO combustion emissions reached the peak value of 6.1 μg m<sup>−3</sup> on 26 June 2008, when it contributed by 47% to nssSO<sub>4</sub><sup>2−</sup>, and by 15% to PM<sub>10</sub>

    Characterization of PM10 sources in the central Mediterranean

    Get PDF
    The Mediterranean Basin atmosphere is influenced by both strong natural and anthropogenic aerosol emissions and is also subject to important climatic forcings. Several programs have addressed the study of the Mediterranean basin; nevertheless important pieces of information are still missing. In this framework, PM10 samples were collected on a daily basis on the island of Lampedusa (35.5° N, 12.6° E; 45 m a.s.l.), which is far from continental pollution sources (the nearest coast, in Tunisia, is more than 100 km away). After mass gravimetric measurements, different portions of the samples were analyzed to determine the ionic content by ion chromatography (IC), the soluble metals by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the total (soluble + insoluble) elemental composition by particle-induced x-ray emission (PIXE). Data from 2007 and 2008 are used in this study. The Positive Matrix Factorization (PMF) model was applied to the 2-year long data set of PM10 mass concentration and chemical composition to assess the aerosol sources affecting the central Mediterranean basin. Seven sources were resolved: sea salt, mineral dust, biogenic emissions, primary particulate ship emissions, secondary sulfate, secondary nitrate, and combustion emissions. Source contributions to the total PM10 mass were estimated to be about 40 % for sea salt, around 25 % for mineral dust, 10 % each for secondary nitrate and secondary sulfate, and 5 % each for primary particulate ship emissions, biogenic emissions, and combustion emissions. Large variations in absolute and relative contributions are found and appear to depend on the season and on transport episodes. In addition, the secondary sulfate due to ship emissions was estimated and found to contribute by about one-third to the total sulfate mass. Results for the sea-salt and mineral dust sources were compared with estimates of the same contributions obtained from independent approaches, leading to an estimate of the water content bound to the sea salt in the marine source

    Saharan dust aerosol over the central Mediterranean Sea: PM<sub>10</sub> chemical composition and concentration versus optical columnar measurements

    Get PDF
    This study aims to determine the mineral contribution to PM<sub>10</sub> in the central Mediterranean Sea, based on 7 yr of daily PM<sub>10</sub> samplings made on the island of Lampedusa (35.5° N, 12.6° E). <br><br> The chemical composition of the PM<sub>10</sub> samples was determined by ion chromatography for the main ions, and, on selected samples, by particle-induced X-ray emission (PIXE) for the total content of crustal markers. Aerosol optical depth measurements were carried out in parallel to the PM<sub>10</sub> sampling. <br><br> The average PM<sub>10</sub> concentration at Lampedusa over the period June 2004–December 2010 is 31.5 μg m<sup>−3</sup>, with low interannual variability. The annual means are below the EU annual standard for PM<sub>10</sub>, but 9.9% of the total number of daily data exceeds the daily threshold value established by the European Commission for PM (50 μg m<sup>−3</sup>, European Community, EC/30/1999). <br><br> The Saharan dust contribution to PM<sub>10</sub> was derived by calculating the contribution of Al, Si, Fe, Ti, non-sea-salt (nss) Ca, nssNa, and nssK oxides in samples in which PIXE data were available. Cases in which crustal content exceeded the 75th percentile of the crustal oxide content distribution were identified as elevated dust events. Using this threshold, we obtained 175 events. Fifty-five elevated dust events (31.6%) displayed PM<sub>10</sub> higher than 50 μg m<sup>−3</sup>, with dust contributing by 33% on average. <br><br> The crustal contribution to PM<sub>10</sub> has an annual average value of 5.42 μg m<sup>−3</sup>, and reaches a value as high as 67.9 μg m<sup>−3</sup> (corresponding to 49% of PM<sub>10</sub>) during an intense Saharan dust event. <br><br> The crustal content estimated from a single tracer, such as Al or Ca, is in good agreement with the one calculated as the sum of the metal oxides. Conversely, larger crustal contents are derived by applying the EU guidelines for demonstration and subtraction of exceedances in PM<sub>10</sub> levels due to high background of natural aerosol. The crustal aerosol amount and contribution to PM<sub>10</sub> showed a very small seasonal dependence; conversely, the dust columnar burden displays an evident annual cycle, with a strong summer maximum (monthly average aerosol optical depth at 500 nm up to 0.28 in June–August). We found that 71.3% of the dust events identified from optical properties over the atmospheric column display a high dust content at the ground level. Conversely, the remaining 28.7% of cases present a negligible or small impact on the surface aerosol composition due to the transport processes over the Mediterranean Sea, where dust frequently travels above the marine boundary layer, especially in summer. <br><br> Based on backward trajectories, two regions, one in Algeria–Tunisia, and one in Libya, are identified as main source areas for intense dust episodes occurring mainly in autumn and winter. Data on the bulk composition of mineral aerosol arising from these two source areas are scarce; results on characteristic ratios between elements show somewhat higher values of Ca / Al and (Ca + Mg) / Fe (2.5 ± 1.0, and 4.7 ± 2.0, respectively) for Algeria–Tunisia than for Libyan origin (Ca / Al = 1.9 ± 0.7 and (Ca + Mg) / Fe = 3.3 ± 1.1)

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624

    Experimental progress in positronium laser physics

    Get PDF
    corecore