110 research outputs found

    Lattice Dynamics in the FeSb₃ Skutterudite

    Get PDF
    Thin films of FeSb3 were characterized by electronic transport, magnetometry, x-ray diffraction, 57Fe and 121Sb nuclear inelastic scattering, and 57Fe Mössbauer spectroscopy. Resistivity and magnetometry measurements reveal semiconducting behavior with a 16.3(4) meV band gap and an effective paramagnetic moment of 0.57(6) B, respectively. A systematic comparison of the lattice dynamics with CoSb3 and EuFe 4Sb12 reveals that the Fe4Sb12 framework is softer than the Co4Sb12 framework, and that the observed softening and the associated lowering of the lattice thermal conductivity in the RFe4Sb12 filled skutterudites are not only related to the filler but also to the Fe4Sb12 framework

    Spin-Polarized Transprot through Double Quantum Dots

    Full text link
    We investigate spin-polarized transport phenomena through double quantum dots coupled to ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the conductance in the Kondo regime for two different configurations of the leads: spin-polarization of two ferromagnetic leads is parallel or anti-parallel. It is found that transport shows some remarkable properties depending on the tunneling strength between two dots. These properties are explained in terms of the Kondo resonances in the local density of states.Comment: 8 pages, 11 figure

    Lattice dynamics of endotaxial silicide nanowires

    Get PDF
    Self-organized silicide nanowires are considered as main building blocks of future nanoelectronics and have been intensively investigated. In nanostructures, the lattice vibrational waves (phonons) deviate drastically from those in bulk crystals, which gives rise to anomalies in thermodynamic, elastic, electronic, and magnetic properties. Hence, a thorough understanding of the physical properties of these materials requires a comprehensive investigation of the lattice dynamics as a function of the nanowire size. We performed a systematic lattice dynamics study of endotaxial FeSi2_2 nanowires, forming the metastable, surface-stabilized α\alpha-phase, which are in-plane embedded into the Si(110) surface. The average widths of the nanowires ranged from 24 to 3 nm, their lengths ranged from several μ\mum to about 100 nm. The Fe-partial phonon density of states, obtained by nuclear inelastic scattering, exhibits a broadening of the spectral features with decreasing nanowire width. The experimental data obtained along and across the nanowires unveiled a pronounced vibrational anisotropy that originates from the specific orientation of the tetragonal α\alpha-FeSi2_2 unit cell on the Si(110) surface. The results from first-principles calculations are fully consistent with the experimental data and allow for a comprehensive understanding of the lattice dynamics of endotaxial silicide nanowires.Comment: 9 pages, 7 figures, 3 table

    Spintronic transport and Kondo effect in quantum dots

    Full text link
    We investigate the spin-dependent transport properties of quantum-dot based structures where Kondo correlations dominate the electronic dynamics. The coupling to ferromagnetic leads with parallel magnetizations is known to give rise to nontrivial effects in the local density of states of a single quantum dot. We show that this influence strongly depends on whether charge fluctuations are present or absent in the dot. This result is confirmed with numerical renormalization group calculations and perturbation theory in the on-site interaction. In the Fermi-liquid fixed point, we determine the correlations of the electric current at zero temperature (shot noise) and demonstrate that the Fano factor is suppressed below the Poissonian limit for the symmetric point of the Anderson Hamiltonian even for nonzero lead magnetizations. We discuss possible avenues of future research in this field: coupling to the low energy excitations of the ferromagnets (magnons), extension to double quantum dot systems with interdot antiferromagnetic interaction and effect of spin-polarized currents on higher symmetry Kondo states such as SU(4).Comment: 11 pages, 5 figures. Proceedings of the 3rd Intl. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara, 200

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure

    The Influence of Molecular Adsorption on Elongating Gold Nanowires

    Full text link
    Using molecular dynamics simulations, we study the impact of physisorbing adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs) undergoing elongation. We used various adsorbate models in our simulations, with each model giving rise to a different surface coverage and mobility of the adsorbed phase. We find that the local structure and mobility of the adsorbed phase remains relatively uniform across all segments of an elongating AuNW, except for the thinning region of the wire where the high mobility of Au atoms disrupts the monolayer structure, giving rise to higher solvent mobility. We analyzed the AuNW trajectories by measuring the ductile elongation of the wires and detecting the presence of characteristic structural motifs that appeared during elongation. Our findings indicate that adsorbates facilitate the formation of high-energy structural motifs and lead to significantly higher ductile elongations. In particular, our simulations result in a large number of monatomic chains and helical structures possessing mechanical stability in excess of what we observe in vacuum. Conversely, we find that a molecular species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    Get PDF
    Background: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phageresistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD 50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophag
    • …
    corecore