978 research outputs found

    Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: New therapeutic strategies

    Get PDF
    Monocyte-derived macrophages (M/M) are considered the second cellular target of HIV-1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV-infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long lime. Moreover, HIV-1 replication in M/M is a key pathogenetic event during the course of HIV-1 infection. Overall findings strongly support the clinical relevance of anti-HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non-NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV-1 chronically infected M/M, even if at concentrations greater than those observed in HIV-1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti-HIV drugs in M/M may represent a key element for the design of effective anti-HIV chemotherapy. © Society for Leukocyte Biology

    End-of-life care in a COPD patient awaiting lung transplantation: a case report

    Get PDF
    COPD is nowadays the main indication for lung transplantation. In appropriately selected patients with end stage COPD, lung transplantation may improve quality of life and prognosis of survival. However, patients with end stage COPD may die while waiting for lung transplantation. Palliative care is important to address the needs of patients with end stage COPD. This case report shows that in a patient with end stage COPD listed for lung transplantation offering palliative care and curative-restorative care concurrently may be problematic. If the requirements to remain a transplantation candidate need to be met, the possibilities for palliative care may be limited. Discussing the possibilities of palliative care and the patient's treatment preferences is necessary to prevent that end-of-life care needs of COPD patients dying while listed for lung transplantation are not optimally addressed. The patient's end-of-life care preferences may ask for a clear distinction between the period in which palliative and curative-restorative care are offered concurrently and the end-of-life care period. This may be necessary to allow a patient to spend the last stage of life according to his or her wishes, even when this implicates that lung transplantation is not possible anymore and the patient will die because of end stage COPD

    Novel Human/Non-Human Primate Cross-Reactive Anti-Transferrin Receptor Nanobodies for Brain Delivery of Biologics

    Get PDF
    The blood-brain barrier (BBB), while being the gatekeeper of the central nervous system (CNS), is a bottleneck for the treatment of neurological diseases. Unfortunately, most of the biologicals do not reach their brain targets in sufficient quantities. The antibody targeting of receptor-mediated transcytosis (RMT) receptors is an exploited mechanism that increases brain permeability. We previously discovered an anti-human transferrin receptor (TfR) nanobody that could efficiently deliver a therapeutic moiety across the BBB. Despite the high homology between human and cynomolgus TfR, the nanobody was unable to bind the non-human primate receptor. Here we report the discovery of two nanobodies that were able to bind human and cynomolgus TfR, making these nanobodies more clinically relevant. Whereas nanobody BBB00515 bound cynomolgus TfR with 18 times more affinity than it did human TfR, nanobody BBB00533 bound human and cynomolgus TfR with similar affinities. When fused with an anti-beta-site amyloid precursor protein cleaving enzyme (BACE1) antibody (1A11AM), each of the nanobodies was able to increase its brain permeability after peripheral injection. A 40% reduction of brain Aβ1–40 levels could be observed in mice injected with anti-TfR/BACE1 bispecific antibodies when compared to vehicle-injected mice. In summary, we found two nanobodies that could bind both human and cynomolgus TfR with the potential to be used clinically to increase the brain permeability of therapeutic biologicals

    SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF THE NOVEL ISOTHIOBARBAMINE ANALOGUES WITH LOWERED BASICITY

    Full text link
    This work was supported by the Russian Scientific Foundation, project № 19-13-00123

    Near-Infrared Fluorescence Imaging for Real-Time Intraoperative Guidance in Anastomotic Colorectal Surgery:A Systematic Review of Literature

    Get PDF
    Purpose: The aims of this review are to determine the feasibility of near-infrared fluorescence (NIRF) angiography in anastomotic colorectal surgery and to determine the effectiveness of the technique in improving imaging and quantification of vascularization, thereby aiding in decision making as to where to establish the anastomosis. Methods: A systematic literature search of PubMed and EMBASE was conducted. Searching through the reference lists of selected articles identified additional studies. All English language articles presenting original patient data regarding intraoperative NIRF angiography were included without restriction of type of study, except for case reports, technical notes, and video vignettes. The intervention consisted of intraoperative NIRF angiography during anastomotic colorectal surgery to assess perfusion of the colon, sigmoid, and/or rectum. Primary outcome parameters included ease of use, added surgical time, complications related to the technique, and costs. Other relevant outcomes were whether this technique changed intraoperative decision making, whether effort was taken by the authors to quantify the signal and the incidence of postoperative complications. Results: Ten studies were included. Eight of these studies make a statement about the ease of use. In none of the studies complications due to the use of the technique occurred. The technique changed the resection margin in 10.8% of all NIRF cases. The anastomotic leak rate was 3.5% in the NIRF group and 7.4% in the group with conventional imaging. Two of the included studies used an objective quantification of the fluorescence signal and perfusion, using ROIs (Hamamatsu Photonics) and IC-Calc® respectively. Conclusions: Although the feasibility of the technique seems to be agreed on by all current research, large clinical trials are mandatory to further evaluate the added value of the technique

    A multi-targeted drug candidate with dual anti-HIV and anti-HSV activity

    Get PDF
    Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens, in particular herpes simplex virus type 2 (HSV-2). The resulting coinfection is involved in a vicious circle of mutual facilitations. Therefore, an important task is to develop a compound that is highly potent against both viruses to suppress their transmission and replication. Here, we report on the discovery of such a compound, designated PMEO-DAPym. We compared its properties with those of the structurally related and clinically used acyclic nucleoside phosphonates (ANPs) tenofovir and adefovir. We demonstrated the potent anti-HIV and -HSV activity of this drug in a diverse set of clinically relevant in vitro, ex vivo, and in vivo systems including (i) CD4⁺ T-lymphocyte (CEM) cell cultures, (ii) embryonic lung (HEL) cell cultures, (iii) organotypic epithelial raft cultures of primary human keratinocytes (PHKs), (iv) primary human monocyte/macrophage (M/M) cell cultures, (v) human ex vivo lymphoid tissue, and (vi) athymic nude mice. Upon conversion to its diphosphate metabolite, PMEO-DAPym markedly inhibits both HIV-1 reverse transcriptase (RT) and HSV DNA polymerase. However, in striking contrast to tenofovir and adefovir, it also acts as an efficient immunomodulator, inducing β-chemokines in PBMC cultures, in particular the CCR5 agonists MIP-1β, MIP-1α and RANTES but not the CXCR4 agonist SDF-1, without the need to be intracellularly metabolized. Such specific β-chemokine upregulation required new mRNA synthesis. The upregulation of β-chemokines was shown to be associated with a pronounced downmodulation of the HIV-1 coreceptor CCR5 which may result in prevention of HIV entry. PMEO-DAPym belongs conceptually to a new class of efficient multitargeted antivirals for concomitant dual-viral (HSV/HIV) infection therapy through inhibition of virus-specific pathways (i.e. the viral polymerases) and HIV transmission prevention through interference with host pathways (i.e. CCR5 receptor down regulation)

    Combinations of Griffithsin with Other Carbohydrate-Binding Agents Demonstrate Superior Activity Against HIV Type 1, HIV Type 2, and Selected Carbohydrate-Binding Agent-Resistant HIV Type 1 Strains

    Full text link
    Abstract Carbohydrate-binding agents (CBAs) are potential HIV microbicidal agents with a high genetic barrier to resistance. We wanted to evaluate whether two mannose-specific CBAs, recognizing multiple and often distinct glycan structures on the HIV envelope gp120, can interact synergistically against HIV-1, HIV-2, and HIV-1 strains that were selected for resistance against particular CBAs [i.e., 2G12 mAb and microvirin (MVN)]. Paired CBA/CBA combinations mainly showed synergistic activity against both wild-type HIV-1 and HIV-2 but also 2G12 mAb- and MVN-resistant HIV-1 strains as based on the median effect principle with combination indices (CIs) ranging between 0.29 and 0.97. Upon combination, an increase in antiviral potency of griffithsin (GRFT) up to ?12-fold (against HIV-1), ?8-fold (against HIV-2), and ?6-fold (against CBA-resistant HIV-1) was observed. In contrast, HHA/GNA combinations showed additive activity against wild-type HIV-1 and HIV-2 strains, but remarkable synergy with HHA and GNA was observed against 2G12 mAb- and MVN-resistant HIV-1 strains (CI, 0.64 and 0.49, respectively). Overall, combinations of GRFT and other CBAs showed synergistic activity against HIV-1, HIV-2, and even against certain CBA-resistant HIV-1 strains. The CBAs tested appear to have distinct binding patterns on the gp120 envelope and therefore do not necessarily compete with each other's glycan binding sites on gp120. As a result, there might be no steric hindrance between two different CBAs in their competition for glycan binding (except for the HHA/GNA combination). These data are encouraging for the use of paired CBA combinations in topical microbicide applications (e.g., creams, gels, or intravaginal rings) to prevent HIV transmission.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98459/1/aid%2E2012%2E0026.pd
    corecore