1,265 research outputs found

    High-Spatial-Resolution Monitoring of Strong Magnetic Field using Rb vapor Nanometric-Thin Cell

    Full text link
    We have implemented the so-called λ\lambda-Zeeman technique (LZT) to investigate individual hyperfine transitions between Zeeman sublevels of the Rb atoms in a strong external magnetic field BB in the range of 2500−50002500 - 5000 G (recently it was established that LZT is very convenient for the range of 10−250010 - 2500 G). Atoms are confined in a nanometric thin cell (NTC) with the thickness L=λL = \lambda, where λ\lambda is the resonant wavelength 794 nm for Rb D1D_1 line. Narrow velocity selective optical pumping (VSOP) resonances in the transmission spectrum of the NTC are split into several components in a magnetic field with the frequency positions and transition probabilities depending on the BB-field. Possible applications are described, such as magnetometers with nanometric local spatial resolution and tunable atomic frequency references.Comment: 12 page

    Dual coherent particle emission as generalized two-component Cherenkov-like effect

    Full text link
    In this Letter we introduce a new kind of coherent particle production mechanism called dual coherent particle emission (DCPE) as generalized two-component Cherenkov-like effect, which takes place when the phase velocity of emitted particle v_{Mph} and the particle source phase velocity v_{B_1ph} satisfy a specific DCPE condition: v_{Mph} <= v_{B_1ph}^{-1}. The general signatures of the DCPE in dielectric, nuclear and hadronic media are established and some experimental evidences are presented.Comment: 12 pages, 4 fig

    Dual coherent particle emission as generalised Cherenkov-like effect in high energy particle collisions

    Full text link
    In this paper we introduce a new kind of nuclear/hadronic coherent particle production mechanism in high-energy collisions called \emph{dual coherent particle emission (DCPE)} which takes place when the phase velocities of the emitted particle v_{Mph} and that of particle source v_{B_1ph} satisfy the dual coherence condition: v_{Mph} <= v_{B_1ph}^-1. The general signatures of the DCPE in the nuclear and hadronic media are established and some experimental evidences are given.Comment: 5 pages, 5 eps figs., revtex4 styl

    An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    Full text link
    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of Parity Violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows

    Complete hyperfine Paschen-Back regime at relatively small magnetic fields realized in Potassium nano-cell

    Full text link
    A one-dimensional nano-metric-thin cell (NC) filled with potassium metal has been built and used to study optical atomic transitions in external magnetic fields. These studies benefit from the remarkable features of the NC allowing one to use λ/2\lambda/2- and λ\lambda-methods for effective investigations of individual transitions of the K D_1 line. The methods are based on strong narrowing of the absorption spectrum of the atomic column of thickness L equal to λ/2\lambda/2 and to λ\lambda(with \lambda = 770\un{nm} being the resonant laser radiation wavelength). In particular, for a π\pi-polarized radiation excitation the λ\lambda-method allows us to resolve eight atomic transitions (in two groups of four atomic transitions) and to reveal two remarkable transitions that we call Guiding Transitions (GT). The probabilities of all other transitions inside the group (as well as the frequency slope versus magnetic field) tend to the probability and to the slope of GT. Note that for circular polarization there is one group of four transitions and GT do not exist. Among eight transitions there are also two transitions (forbidden for BB = 0) with the probabilities undergoing strong modification under the influence of magnetic fields. Practically the complete hyperfine Paschen-Back regime is observed at relatively low (\sim 1\un{kG}) magnetic fields. Note that for K D2D_2 line GT are absent. Theoretical models describe the experiment very well.Comment: 6 page

    Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell

    Full text link
    Nonlinear magneto-optical resonances have been measured in an extremely thin cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural isotopic composition. All hyperfine transitions of both isotopes have been studied for a wide range of laser power densities, laser detunings, and ETC wall separations. Dark resonances in the laser induced fluorescence (LIF) were observed as expected when the ground state total angular momentum F_g was greater than or equal to the excited state total angular momentum F_e. Unlike the case of ordinary cells, the width and contrast of dark resonances formed in the ETC dramatically depended on the detuning of the laser from the exact atomic transition. A theoretical model based on the optical Bloch equations was applied to calculate the shapes of the resonance curves. The model averaged over the contributions from different atomic velocity groups, considered all neighboring hyperfine transitions, took into account the splitting and mixing of magnetic sublevels in an external magnetic field, and included a detailed treatment of the coherence properties of the laser radiation. Such a theoretical approach had successfully described nonlinear magneto-optical resonances in ordinary vapor cells. Although the values of certain model parameters in the ETC differed significantly from the case of ordinary cells, the same physical processes were used to model both cases. However, to describe the resonances in the ETC, key parameters such as the transit relaxation rate and Doppler width had to be modified in accordance with the ETC's unique features. Agreement between the measured and calculated resonance curves was satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10 figures; accepted for publication in Physical Review

    Magnetic field--induced modification of selection rules for Rb D2_2 line monitored by selective reflection from a vapor nanocell

    Full text link
    Magnetic field-induced giant modification of the probabilities of five transitions of 5S1/2,Fg=2→5P3/2,Fe=45S_{1/2}, F_g=2 \rightarrow 5P_{3/2}, F_e=4 of 85^{85}Rb and three transitions of 5S1/2,Fg=1→5P3/2,Fe=35S_{1/2}, F_g=1 \rightarrow 5P_{3/2}, F_e=3 of 87^{87}Rb forbidden by selection rules for zero magnetic field has been observed experimentally and described theoretically for the first time. For the case of excitation with circularly-polarized (σ+\sigma^+) laser radiation, the probability of Fg=2, mF=−2→Fe=4, mF=−1F_g=2, ~m_F=-2 \rightarrow F_e=4, ~m_F=-1 transition becomes the largest among the seventeen transitions of 85^{85}Rb Fg=2→Fe=1,2,3,4F_g=2 \rightarrow F_e=1,2,3,4 group, and the probability of Fg=1, mF=−1→Fe=3, mF=0F_g=1,~m_F=-1 \rightarrow F_e=3,~m_F=0 transition becomes the largest among the nine transitions of 87^{87}Rb Fg=1→Fe=0,1,2,3F_g=1 \rightarrow F_e=0,1,2,3 group, in a wide range of magnetic field 200 -- 1000 G. Complete frequency separation of individual Zeeman components was obtained by implementation of derivative selective reflection technique with a 300 nm-thick nanocell filled with Rb, allowing formation of narrow optical resonances. Possible applications are addressed. The theoretical model is perfectly consistent with the experimental results.Comment: 6 pages, 5 figure

    High contrast D1_{1} line electromagnetically induced transparency in nanometric-thin rubidium vapor cell

    Full text link
    Electromagnetically induced transparency (EIT) on atomic D1_{1} line of rubidium is studied using a nanometric-thin cell with atomic vapor column length in the range of L= 400 - 800 nm. It is shown that the reduction of the cell thickness by 4 orders as compared with an ordinary cm-size cell still allows to form an EIT resonance for L=λL= \lambda (λ=794\lambda =794 nm) with the contrast of up to 40%. Remarkable distinctions of EIT formation in nanometric-thin and ordinary cells are demonstrated. Despite the Dicke effect of strong spectral narrowing and increase of the absorption for L=L= λ/2\lambda /2, EIT resonance is observed both in the absorption and the fluorescence spectra for relatively low intensity of the coupling laser. Well resolved splitting of the EIT resonance in moderate magnetic field for L=L= λ\lambda can be used for magnetometry with nanometric spatial resolution. The presented theoretical model well describes the observed results.Comment: Submitted to Applied Physics B: Lasers and Optics, 9 pages, 10 figure
    • …
    corecore