141 research outputs found

    Analysis of Cone-Beam Artifacts in off-Centered Circular CT for Four Reconstruction Methods

    Get PDF
    Cone-beam (CB) acquisition is increasingly used for truly three-dimensional X-ray computerized tomography (CT). However, tomographic reconstruction from data collected along a circular trajectory with the popular Feldkamp algorithm is known to produce the so-called CB artifacts. These artifacts result from the incompleteness of the source trajectory and the resulting missing data in the Radon space increasing with the distance to the plane containing the source orbit. In the context of the development of integrated PET/CT microscanners, we introduced a novel off-centered circular CT cone-beam geometry. We proposed a generalized Feldkamp formula (α-FDK) adapted to this geometry, but reconstructions suffer from increased CB artifacts. In this paper, we evaluate and compare four different reconstruction methods for correcting CB artifacts in off-centered geometry. We consider the α-FDK algorithm, the shift-variant FBP method derived from the T-FDK, an FBP method based on the Grangeat formula, and an iterative algebraic method (SART). The results show that the low contrast artifacts can be efficiently corrected by the shift-variant method and the SART method to achieve good quality images at the expense of increased computation time, but the geometrical deformations are still not compensated for by these techniques

    Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional 1H-MRS study

    Get PDF
    Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to assess noninvasively the temporal changes of lactate (Lac) in the activated human brain. Migraine neurobiology involves lack of cortical habituation to repetitive stimuli and a mitochondrial component has been put forward. Our group has recently demonstrated a reduction in the high-energy phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) in the occipital lobe of migraine without aura (MwoA) patients, at least in a subgroup, in a phosphorus MRS (31P-MRS) study. In previous studies, basal Lac levels or photic stimulation (PS)-induced Lac levels were found to be increased in patients with migraine with aura (MwA) and migraine patients with visual symptoms and paraesthesia, paresia and/or dysphasia, respectively. The aim of this study was to perform functional 1H-MRS at 3 T in 20 MwoA patients and 20 control subjects. Repetitive visual stimulation was applied using MR-compatible goggles with 8 Hz checkerboard stimulation during 12 min. We did not observe any significant differences in signal integrals, ratios and absolute metabolite concentrations, including Lac, between MwoA patients and controls before PS. Lac also did not increase significantly during and following PS, both for MwoA patients and controls. Subtle Lac changes, smaller than the sensitivity threshold (i.e. estimated at 0.1–0.2 μmol/g at 3 T), cannot be detected by MRS. Our study does, however, argue against a significant switch to non-aerobic glucose metabolism during long-lasting PS of the visual cortex in MwoA patients

    Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Get PDF
    BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons

    Frontal GABA Levels Change during Working Memory

    Get PDF
    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing

    Magnetic Resonance Imaging

    No full text
    International audienceChapter 2. Magnetic Resonance Imaging 73 Dominique SAPPEY-MARINIER and André BRIGUE

    Magnetic Resonance Imaging

    No full text
    International audienceChapter 2. Magnetic Resonance Imaging 73 Dominique SAPPEY-MARINIER and André BRIGUE
    corecore