704 research outputs found
Euclid : Forecast constraints on consistency tests of the Lambda CDM model
Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant Lambda and the cold dark matter (Lambda CDM) model in the redshift range 0 < z < 1.8. Methods. We considered both currently available data and simulated Euclid and external data products based on a Lambda CDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaitre-Tolman-Bondi model with a cosmological constant Lambda, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model. Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the Lambda CDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from Lambda CDM Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm.Peer reviewe
The SPHERE data center: a reference for high contrast imaging processing
The objective of the SPHERE Data Center is to optimize the scientific return
of SPHERE at the VLT, by providing optimized reduction procedures, services to
users and publicly available reduced data. This paper describes our motivation,
the implementation of the service (partners, infrastructure and developments),
services, description of the on-line data, and future developments. The SPHERE
Data Center is operational and has already provided reduced data with a good
reactivity to many observers. The first public reduced data have been made
available in 2017. The SPHERE Data Center is gathering a strong expertise on
SPHERE data and is in a very good position to propose new reduced data in the
future, as well as improved reduction procedures.Comment: SF2A proceeding
A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey
We provide exact solutions to the cosmological matter perturbation equation
in a homogeneous FLRW universe with a vacuum energy that can be parametrized by
a constant equation of state parameter and a very accurate approximation
for the Ansatz . We compute the growth index \gamma=\log
f(a)/\log\Om_m(a), and its redshift dependence, using the exact and
approximate solutions in terms of Legendre polynomials and show that it can be
parametrized as in most cases. We then
compare four different types of dark energy (DE) models: CDM, DGP,
and a LTB-large-void model, which have very different behaviors at
z\gsim1. This allows us to study the possibility to differentiate between
different DE alternatives using wide and deep surveys like Euclid, which will
measure both photometric and spectroscopic redshifts for several hundreds of
millions of galaxies up to redshift . We do a Fisher matrix analysis
for the prospects of differentiating among the different DE models in terms of
the growth index, taken as a given function of redshift or with a principal
component analysis, with a value for each redshift bin for a Euclid-like
survey. We use as observables the complete and marginalized power spectrum of
galaxies and the Weak Lensing (WL) power spectrum. We find that, using
, one can reach (2%, 5%) errors in , and (4%, 12%) errors in
, while using WL we get errors at least twice as large.
These estimates allow us to differentiate easily between DGP, models and
CDM, while it would be more difficult to distinguish the latter from a
variable equation of state parameter or LTB models using only the growth
index.}Comment: 29 pages, 7 figures, 6 table
Differentiating dark energy and modified gravity with galaxy redshift surveys
The observed cosmic acceleration today could be due to an unknown energy
component (dark energy), or a modification to general relativity (modified
gravity). If dark energy models and modified gravity models are required to
predict the same cosmic expansion history H(z), they will predict different
growth rate for cosmic large scale structure, f_g(z)=d\ln \delta/d\ln a
(\delta=(\rho_m-\bar{\rho_m})/\bar{\rho_m}), a is the cosmic scale factor). If
gravity is not modified, the measured H(z) leads to a unique prediction for
f_g(z), f_g^H(z). Comparing f_g^H(z) with the measured f_g(z) provides a
transparent and straightforward test of gravity. We show that a simple \chi^2
test provides a general figure-of-merit for our ability to distinguish between
dark energy and modified gravity given the measured H(z) and f_g(z). We study a
magnitude-limited NIR galaxy redshift survey covering >10,000 (deg)^2 and the
redshift range of 0.5<z<2. The resultant data can be divided into 7 redshift
bins, and yield the measurement of H(z) to the accuracy of 1-2% via baryon
acoustic oscillation measurements, and f_g(z) to the accuracy of a few percent
via the measurement of redshift space distortions and the bias factor which
describes how light traces mass. We find that if the H(z) data are fit by both
a DGP gravity model and an equivalent dark energy model that predict the same
expansion history, a survey area of 11,931 (deg)^2 is required to rule out the
DGP gravity model at the 99.99% confidence level. It is feasible for such a
galaxy redshift survey to be carried out by the next generation space missions
from NASA and ESA, and it will revolutionize our understanding of the universe
by differentiating between dark energy and modified gravity.Comment: 6 pages, 2 color figures. Expanded version accepted by JCA
Coupled Quintessence and Phantom Based On a Dilaton
Based on dilatonic dark energy model, we consider two cases: dilaton field
with positive kinetic energy(coupled quintessence) and with negative kinetic
energy(phantom). In the two cases, we investigate the existence of attractor
solutions which correspond to an equation of state parameter and a
cosmic density parameter . We find that the coupled term
between matter and dilaton can't affect the existence of attractor solutions.
In the Mexican hat potential, the attractor behaviors, the evolution of state
parameter and cosmic density parameter , are shown
mathematically. Finally, we show the effect of coupling term on the evolution
of and with
respect to numerically.Comment: 9 pages, 11 figures, some references and Journal-ref adde
Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water
Epidemiological evidence suggests a link between consumption of chlorinated drinking water and various cancers. Chlorination of water rich in organic chemicals produces carcinogenic organochlorine by-products (OBPs) such as trihalomethanes and haloacetic acids. Since the discovery of the first OBP in the 1970s, there have been several investigations designed to determine the biological effects of single chemicals or small artificial OBP combinations. However, there is still insufficient information regarding the general biological response to these compounds, and further studies are still needed to evaluate their potential genotoxic effects. In the current study, we evaluated the effect of three drinking water disinfectants on the activity of cytochrome P450 (CYP)-linked metabolizing enzymes and on the generation of oxidative stress in the livers of male and female Cyprinus carpio fish (carp). The fish were exposed in situ for up 20 days to surface water obtained from the Trasmene lake in Italy. The water was treated with 1-2 mg/L of either sodium hypochlorite (NaClO) or chlorine dioxide (ClO2) as traditional disinfectants or with a relatively new disinfectant product, peracetic acid (PAA). Micronucleus (MN) frequencies in circulating erythrocytes from the fish were also analysed as a biomarker of genotoxic effect. In the CYP-linked enzyme assays, a significant induction (up to a 57-fold increase in the deethylation of ethoxyresorufin with PAA treatment) and a notable inactivation (up to almost a 90% loss in hydroxylation of p-nitrophenol with all disinfectants, and of testosterome 2 beta-hydroxylation with NaClO) was observed in subcellular liver preparations from exposed fish. Using the electron paramagnetic resonance (EPR) spectroscopy radical-probe technique, we also observed that CYP-modulation was associated with the production of reactive oxygen species (ROS). In addition, we found a significant increase in MN frequency in circulating erythrocytes after 10 days of exposure of fish to water treated with ClO2, while a non-significant six-fold increase in MN frequency was observed with NaClO, but not with PAA. Our data suggest that the use of ClO2 and NaClO to disinfect drinking water could generate harmful OBP mixtures that are able to perturb CYP-mediated reactions, generate oxidative stress and induce genetic damage. These data may provide a mechanistic explanation for epidemiological studies linking consumption of chlorinated drinking water to increased risk of urinary, gastrointestinal and bladder cancers. (c) 2006 Elsevier B.V. All rights reserved
The Adiabatic Instability on Cosmology's Dark Side
We consider theories with a nontrivial coupling between the matter and dark
energy sectors. We describe a small scale instability that can occur in such
models when the coupling is strong compared to gravity, generalizing and
correcting earlier treatments. The instability is characterized by a negative
sound speed squared of an effective coupled dark matter/dark energy fluid. Our
results are general, and applicable to a wide class of coupled models and
provide a powerful, redshift-dependent tool, complementary to other
constraints, with which to rule many of them out. A detailed analysis and
applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur
- …