62 research outputs found

    Variations in atmospheric angular momentum

    Get PDF
    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions

    Impact of satellite data on large-scale circulation statistics as determined from GLAS analyses during FGGE-SOP-1

    Get PDF
    A study using the analyses produced from the assimilation cycle of parallel model runs that both include and withhold satellite data was undertaken. The analyzed state of the atmosphere is performed using data from a certain test period during the first Special Observing Period (SOP) of the Global Weather Experiment (FGGE)

    Variations in atmospheric angular momentum and the length of day

    Get PDF
    Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described

    Use of operational analyses to study the dynamics of troposphere-stratosphere interactions in polar regions

    Get PDF
    Operational analyses produced by large weather centers have been used in the past to monitor various aspects of the general circulation as well as address dynamical questions. For a number years researchers have been monitoring National Meteorological Center (NMC) analyses at 100 millibars because it is the level from which stratospheric analyses are built. In particular, they closely examined the pressure-work term at that level which is an important parameter related to the forcing of the stratosphere by the troposphere. Rapid fluctuations typically seen in this quanity during the months of July-November, and similarly noted by Randel et al., (1987) may raise some concern about the quality of the analyses. Researchers investigated the behavior of the term mainly responsible for these variations, namely the eddy flux of heat, and furthermore have corroborated the presence of these variations in contemporaneous analyses produced by the European Centre for Medium Range Forecasts (ECMWF). Researchers demonstrated that fluctuations in standing eddy heat fluxes, related to the forcing of the stratosphere by the troposphere, agree in two largely independent meteorological analyses. Researchers believe, that these fluctuations are mostly real

    Generation of available potential energy and the energy cycle during the global weather experiment

    Get PDF
    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere

    Interannual signals in length of day and atmospheric angular momentum

    No full text
    International audienceAtmospheric angular momentum (AAM) and length of day (LOD) series are investigated for their characteristics on interannual time scales during the half-century period 1949 to 1998. During this epoch, the interannual variability in LOD can be separated naturally into three bands: a quasi-biennial, a triennial-quadrennial and one at six-seven years. The atmosphere appears to excite the first two bands, while it does not contribute to the last. Considering the quasi-biennial (QB) band alone, the atmosphere appears to excite most of its signal in LOD, but it arises from separate fluctuations with stratospheric and tropospheric origin. Thus, although close in frequency, stratospheric and tropospheric processes differ in their amplitude and phase variability. The time shift can be noted especially during the strong El Niño events of 1982-83 and 1997-98 when both processes have positive phase and thus combine to help produce particularly strong peak in AAM and LOD. In addition, we have reconfirmed the downward propagation in the stratosphere and upward propagation in the troposphere of AAM observed in earlier studies for other variables. In the triennial-quadrennial (TQ) band, time-variable spectral analyses reveal that LOD and AAM contain strong variability, with periods shorter than four years before 1975 and longer thereafter. This signal originates mainly within the troposphere and propagates upwards from the lower to the higher layers of the troposphere. According to a zonal analysis, an equatorial poleward mode, strongly linked to the SOI, explains more than 60% of the total variability at these ranges. In addition, this study also indicates that an equatorward mode, originating within polar latitudes, explains, on average, more than 15% of the triennial-quadrennial oscillation (TQO) variability in AAM, and up to 30% at certain epochs. Finally, a six year period in LOD noted in earlier studies, as well as in lengthier series covering much of the century, is found to be absent in atmospheric excitations, and it is thus likely to arise from mantle/core interactions

    Are Ocean Reanalyses Useful for Earth Rotation Research?

    No full text
    Oceanic circulation and mass‐field variability play important roles in exciting Earth's wobbles and length‐of‐day changes (ΔΛ), on time scales from days to several years. Modern descriptions of these effects employ oceanic angular momentum (OAM) series from numerical forward models or ocean state estimates, but nothing is known about how ocean reanalyses with sequential data assimilation (DA) would fare in that context. Here, we compute daily OAM series from three 1/4° global ocean reanalyses that are based on the same hydrodynamic core and input data (e.g., altimetry, Argo) but different DA schemes. Comparisons are carried out (a) among the reanalyses, (b) with an established ocean state estimate, and (c) with Earth rotation data, all focusing on the period 2006–2015. The reanalyses generally provide credible OAM estimates across a range of frequencies, although differences in amplitude spectra indicate a sensitivity to the adopted DA scheme. For periods less than 120 days, the reanalysis‐based OAM series explain ∼40%–50% and ∼30%–40% of the atmosphere‐corrected equatorial and axial geodetic excitation, similar to what is achieved with the state estimate. We find mixed performance of the reanalyses in seasonal excitation budgets, with some questionable mean ocean mass changes affecting the annual cycle in ΔΛ. Modeled excitations at interannual frequencies are more uncertain compared to OAM series from the state estimate and show hints of DA artifacts in one case. If users are to choose any of the tested reanalyses for rotation research, our study points to the Ocean Reanalysis System 5 as the most sensible choice.Key Points: We evaluate three ocean reanalyses for their skill in explaining Earth rotation variations on different time scales from 2006 to 2015. For periods <120 days, reanalyses explain 40%–50% of atmosphere‐reduced polar motion excitation variance, similar to an ocean state estimate. Reanalyses show mixed skill in seasonal excitation budgets and, in one case, hints of data assimilation artifacts at interannual periods.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659https://resources.marine.copernicus.eu/product-detail/GLOBAL_REANALYSIS_PHY_001_031/INFORMATIONhttps://isdc.gfz-potsdam.de/ggfc-oceans/oam/https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/mascon/RL06/JPL/v02/CRI/netcdfhttps://keof.jpl.nasa.gov/combinations

    Interannual signals in length of day and atmospheric angular momentum

    No full text
    Atmospheric angular momentum (AAM) and length of day (LOD) series are investigated for their characteristics on interannual time scales during the half-century period 1949 to 1998. During this epoch, the interannual variability in LOD can be separated naturally into three bands: a quasi-biennial, a triennial-quadrennial and one at six-seven years. The atmosphere appears to excite the first two bands, while it does not contribute to the last. Considering the quasi-biennial (QB) band alone, the atmosphere appears to excite most of its signal in LOD, but it arises from separate fluctuations with stratospheric and tropospheric origin. Thus, although close in frequency, stratospheric and tropospheric processes differ in their amplitude and phase variability. The time shift can be noted especially during the strong El Niño events of 1982-83 and 1997-98 when both processes have positive phase and thus combine to help produce particularly strong peak in AAM and LOD. In addition, we have reconfirmed the downward propagation in the stratosphere and upward propagation in the troposphere of AAM observed in earlier studies for other variables. In the triennial-quadrennial (TQ) band, time-variable spectral analyses reveal that LOD and AAM contain strong variability, with periods shorter than four years before 1975 and longer thereafter. This signal originates mainly within the troposphere and propagates upwards from the lower to the higher layers of the troposphere. According to a zonal analysis, an equatorial poleward mode, strongly linked to the SOI, explains more than 60% of the total variability at these ranges. In addition, this study also indicates that an equatorward mode, originating within polar latitudes, explains, on average, more than 15% of the triennial-quadrennial oscillation (TQO) variability in AAM, and up to 30% at certain epochs. Finally, a six year period in LOD noted in earlier studies, as well as in lengthier series covering much of the century, is found to be absent in atmospheric excitations, and it is thus likely to arise from mantle/core interactions.Key words: Meteorology and atmospheric dynamics (general circulation) - Solar physics, astrophysics and astronomy (celestial mechanics
    corecore