5,954 research outputs found

    A signature of anisotropic bubble collisions

    Full text link
    Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension---the modulus of which tunnels out of a metastable minimum during bubble nucleation---which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.Comment: 10 pages, 5 figures; v2: crucial error corrected, conclusions revise

    Experimental observation of two-dimensional fluctuation magnetization in the vicinity of T_c for low values of the magnetic field in deoxygenated YBa_2Cu_3O_{7-x}

    Full text link
    We measured isofield magnetization curves as a function of temperature in two single crystal of deoxygenated YBaCuO with T_c = 52 and 41.5 K. Isofield MvsT were obtained for fields running from 0.05 to 4 kOe. The reversible region of the magnetization curves was analyzed in terms of a scaling proposed by Prange, but searching for the best exponent Ï…\upsilon. The scaling analysis carried out for each data sample set with Ï…\upsilon=0.669, which corresponds to the 3D-xy exponent, did not produced a collapsing of curves when applied to MvsT curves data obtained for the lowest fields. The resulting analysis for the Y123 crystal with T_c = 41.5 K, shows that lower field curves collapse over the entire reversible region following the Prange's scaling with Ï…\upsilon=1, suggesting a two-dimensional behavior. It is shown that the same data obeying the Prange's scaling with Ï…\upsilon=1 for crystal with T_c = 41.5 K, as well low field data for crystal with TcT_c = 52 K, obey the known two-dimensional scaling law obtained in the lowest-Landau-level approximation.Comment: 4 pages, 3 figure

    Quantitative calculations of the excitonic energy spectra of semiconducting single-walled carbon nanotubes within a π\pi-electron model

    Full text link
    Using Coulomb correlation parameters appropriate for π\pi-conjugated polymers (PCPs), and a nearest neighbor hopping integral that is arrived at by fitting the energy spectra of three zigzag semiconducting single-walled carbon nanotubes (S-SWCNTs), we are able to determine quantitatively the exciton energies and exciton binding energies of 29 S-SWCNTs within a semiempirical π\pi-electron Hamiltonian that has been widely used for PCPs. Our work establishes the existence of a deep and fundamental relationship between PCPs and S-SWCNTs.Comment: 6 pages, 2 figures, 2 table

    Onset of phase correlations in YBa2Cu3O{7-x} as determined from reversible magnetization measurements

    Full text link
    Isofield magnetization curves are obtained and analyzed for three single crystals of YBa2Cu3O{7-x}, ranging from optimally doped to very underdoped, as well as the BCS superconductor Nb, in the presence of magnetic fields applied both parallel and perpendicular to the abab planes. Near Tc, the magnetization exhibits a temperature dependence \sqrt{M} [Ta(H)-T]^m. In accordance with recent theories, we associated Ta(H) with the onset of coherent phase fluctuations of the superconducting order parameter. For Nb and optimally doped YBaCuO, Ta(H) is essentially identical to the mean-field transition line Tc(H). The fitting exponent m=0.5 takes its mean-field value for Nb, and varies just slightly from 0.5 for optimally doped YBaCuO. However, underdoped YBCO samples exhibit anomalous behavior, with Ta(H)>Tc for H applied parallel to the c axis, suggesting that the magnetization is probing a region of temperatures above Tc where phase correlations persist. In this region, the fitting exponent falls in the range 0.5 < m < 0.8 for H\parallel c, compared with m~0. for $H\parallel ab planes. The results are interpreted in terms of an anisotropic pairing symmetry of the order parameter: d-wave along the ab planes and s-wave along the c axis.Comment: 5 pages, 4 figure

    Non-centro-symmetric superconductors Li2Pd3B and Li2(Pd0.8Pt0.2)3B: amplitude and phase fluctuations analysis of the experimental magnetization data

    Full text link
    We report on magnetization data obtained as a function of temperature and magnetic field in Li2 (Pd0.8Pt0.2)3B and Li2Pd3B non-centro-symmetric superconductors. Reversible magnetization curves were plotted as M1/2 vs. T. This allows study of the asymptotic behavior of the averaged order parameter amplitude (gap) near the superconducting transition. Results of the analysis show, as expected, a mean field superconducting transition for Li2Pd3B. On contrary, a large deviation from the mean field behavior is revealed for Li2(Pd0.8Pt0.2)3B. This is interpreted as due to the strength of the non s-wave spin-triplet pairing in this Pt-containing compound which produces nodes in the order parameter and consequently, phase fluctuations. The diamagnetic signal above Tc(H) in Li2Pd3B is well explained by superconducting Gaussian fluctuations, which agrees with the observed mean field transition. For Li2(Pd0.8Pt0.2)3B the diamagnetic signal above Tc(H) is much higher than the expected Gaussian values and appears to be well explained by three dimensional critical fluctuations of the lowest-Landau-level type, which somehow agrees with the scenario of a phase mediated transition.Comment: 7 pages (1 column) 3 figure

    Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind

    Full text link
    The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure anisotropy-driven instabilities. Here we use approximately 1 million independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (β∥≳1\beta_\parallel \gtrsim 1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. The power in this frequency (the 'dissipation') range is often considered to be driven by the solar wind turbulent cascade, an interpretation which should be qualified in light of the present results. In particular, we show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.Comment: 4 pages, 4 figure
    • …
    corecore