The proton temperature anisotropy in the solar wind is known to be
constrained by the theoretical thresholds for pressure anisotropy-driven
instabilities. Here we use approximately 1 million independent measurements of
gyroscale magnetic fluctuations in the solar wind to show for the first time
that these fluctuations are enhanced along the temperature anisotropy
thresholds of the mirror, proton oblique firehose, and ion cyclotron
instabilities. In addition, the measured magnetic compressibility is enhanced
at high plasma beta (β∥≳1) along the mirror instability
threshold but small elsewhere, consistent with expectations of the mirror mode.
The power in this frequency (the 'dissipation') range is often considered to be
driven by the solar wind turbulent cascade, an interpretation which should be
qualified in light of the present results. In particular, we show that the
short wavelength magnetic fluctuation power is a strong function of
collisionality, which relaxes the temperature anisotropy away from the
instability conditions and reduces correspondingly the fluctuation power.Comment: 4 pages, 4 figure