2,477 research outputs found

    Quantum protocols for anonymous voting and surveying

    Get PDF
    We describe quantum protocols for voting and surveying. A key feature of our schemes is the use of entangled states to ensure that the votes are anonymous and to allow the votes to be tallied. The entanglement is distributed over separated sites; the physical inaccessibility of any one site is sufficient to guarantee the anonymity of the votes. The security of these protocols with respect to various kinds of attack is discussed. We also discuss classical schemes and show that our quantum voting protocol represents a N-fold reduction in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio

    Absorption spectra of Fe L-lines in Seyfert 1 galaxies

    Full text link
    Absorption L-lines of iron ions are observed, in absorption, in spectra of Seyfert 1 galaxies by the new generation of X-ray satellites: Chandra (NASA) and XMM-Newton (ESA). Lines associated to Fe23+ to Fe17+ are well resolved. Whereas, those corresponding to Fe16+ to Fe6+ are unresolved. Forbidden transitions of the Fe16+ to Fe6+ ions were previously observed, for the same objects, in the visible and infra-red regions, showing that the plasma had a low density. To interpret X-ray, visible and infra-red data, astrophysical models assume an extended absorbing medium of very low density surrounding an intense X-ray source. We have calculated atomic data (wavelengths, radiative and autoionization rates) for n=2 to n'=3-4 transitions and used them to construct refined synthetic spectra of the unresolved part of the L-line spectra.Comment: 17 pages, 5 figures, Journal of Quantitative Spectroscopy and Radiative Transfer, in pres

    On the source contribution to the Galactic diffuse gamma rays above 398 TeV detected by the Tibet AS{\gamma} experiment

    Full text link
    Potential contribution from gamma-ray sources to the Galactic diffuse gamma rays observed above 100 TeV (sub-PeV energy range) by the Tibet AS{\gamma} experiment is an important key to interpreting recent multi-messenger observations. This paper reveals a surprising fact: none of the 23 Tibet AS{\gamma} diffuse gamma-ray events above 398TeV within the Galactic latitudinal range of |b| < 10 deg. come from the 43 sub-PeV gamma-ray sources reported in the 1LHAASO catalog, which proves that these sources are not the origins of the Tibet AS{\gamma} diffuse gamma-ray events. No positional overlap between the Tibet AS{\gamma} diffuse gamma-ray events and the sub-PeV LHAASO sources currently supports the diffusive nature of the Tibet AS{\gamma} diffuse gamma-ray events, although their potential origin in the gamma-ray sources yet unresolved in the sub-PeV energy range cannot be ruled out.Comment: 5 pages, 2 figures Accepted for publication from The Astrophysical Journal Letters. arXiv admin note: text overlap with arXiv:2309.1607

    Resolved 24.5 micron emission from massive young stellar objects

    Full text link
    Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes. Our aim is to establish their density structure on scales of ~1000 AU, i.e. a factor 10 increase in angular resolution compared to similar studies performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5 micron images of 14 well-known massive star formation regions with Subaru/COMICS. The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales. For many sources, radiative transfer models are capable of satisfactorily reproducing the observations. They are described by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p = 1.0 and there is evidence that these MYSOs are viewed near edge-on or near face-on, respectively. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We thus find a flattening of the MYSO envelope density law going from ~10 000 AU down to scales of ~1000 AU. We propose that this may be evidence of rotational support of the envelope (abridged).Comment: 21 pages, accepted for A&

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (≥1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap
    • …
    corecore