2,931 research outputs found
The shape evolution of cometary nuclei via anisotropic mass loss
Context. Breathtaking imagery recorded during the European Space Agency's
Rosetta mission confirmed the bilobate nature of comet
67P/Churyumov-Gerasimenko's nucleus. Its peculiar appearance is not unique
among comets. The majority of cometary cores imaged at high resolution exhibit
a similar build. Various theories have been brought forward as to how cometary
nuclei attain such peculiar shapes.
Aims. We illustrate that anisotropic mass loss and local collapse of
subsurface structures caused by non-uniform exposure of the nucleus to solar
irradiation can transform initially spherical comet cores into bilobed ones.
Methods. A mathematical framework to describe the changes in morphology
resulting from non-uniform insolation during a nucleus' spin-orbit evolution is
derived. The resulting partial differential equations that govern the change in
the shape of a nucleus subject to mass loss and consequent collapse of depleted
subsurface structures are solved analytically for simple insolation
configurations and numerically for more realistic scenarios.
Results. The here proposed mechanism is capable of explaining why a large
fraction of periodic comets appear to have peanut-shaped cores and why
light-curve amplitudes of comet nuclei are on average larger than those of
typical main belt asteroids of the same size.Comment: 4 pages of the main text, 2 pages of appendix, 4 figure
Random matrix models for phase diagrams
We describe a random matrix approach that can provide generic and readily
soluble mean-field descriptions of the phase diagram for a variety of systems
ranging from QCD to high-T_c materials. Instead of working from specific
models, phase diagrams are constructed by averaging over the ensemble of
theories that possesses the relevant symmetries of the problem. Although
approximate in nature, this approach has a number of advantages. First, it can
be useful in distinguishing generic features from model-dependent details.
Second, it can help in understanding the `minimal' number of symmetry
constraints required to reproduce specific phase structures. Third, the
robustness of predictions can be checked with respect to variations in the
detailed description of the interactions. Finally, near critical points, random
matrix models bear strong similarities to Ginsburg-Landau theories with the
advantage of additional constraints inherited from the symmetries of the
underlying interaction. These constraints can be helpful in ruling out certain
topologies in the phase diagram. In this Key Issue, we illustrate the basic
structure of random matrix models, discuss their strengths and weaknesses, and
consider the kinds of system to which they can be applied.Comment: 29 pages, 2 figures, uses iopart.sty. Author's postprint versio
Improved Search for Heavy Neutrinos in the Decay
A search for massive neutrinos has been made in the decay . No evidence was found for extra peaks in the positron energy spectrum
indicative of pion decays involving massive neutrinos (). Upper limits (90 \% C.L.) on the neutrino mixing matrix element
in the neutrino mass region 60--135 MeV/ were set, which are
%representing an order of magnitude improvement over previous results
Status of the TRIUMF PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio
with precision % to provide a sensitive test of electron-muon
universality in weak interactions. The current status of the PIENU experiment
is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure
Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment
The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of <0.1%.
Precise measurement of Rπ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented
Cherenkov Radiation from Pairs and Its Effect on Induced Showers
We calculate the Cherenkov radiation from an pair at small
separations, as occurs shortly after a pair conversion. The radiation is
reduced (compared to that from two independent particles) when the pair
separation is smaller than the wavelength of the emitted light. We estimate the
reduction in light in large electromagnetic showers, and discuss the
implications for detectors that observe Cherenkov radiation from showers in the
Earth's atmosphere, as well as in oceans and Antarctic ice.Comment: Final version, with minor changes, to appear in PRD. 5 pages with 4
figure
Investment attractiveness of closed-end real estate investment funds in Russia: factor score evaluation
Closed-end real estate investment fund is currently one of the most popular instruments of collective investments in Russia. In this article, we have designed a factor score method to evaluate the investment attractiveness of closed-end real estate investment funds as the objective of the research. The method differs from others in three elements of attractiveness evaluation: the real estate market, asset management company, and asset portfolio. We suggest evaluating each element by the appropriate factors. In the research, all the factors are grouped and systemized as variable-based and attribute-based factors in the three elements of investment attractiveness. The evaluation is based on the expert scores and factor criteria. Results of the research show the differences between preferences of conservative, moderate and aggressive investors when they invest in closed-end investment fund. The desighed method serves for different types of investors to express their attitude to a specific real estate closed-end fund
- …