5,520 research outputs found

    The solution of the quantum A1A_1 T-system for arbitrary boundary

    Full text link
    We solve the quantum version of the A1A_1 TT-system by use of quantum networks. The system is interpreted as a particular set of mutations of a suitable (infinite-rank) quantum cluster algebra, and Laurent positivity follows from our solution. As an application we re-derive the corresponding quantum network solution to the quantum A1A_1 QQ-system and generalize it to the fully non-commutative case. We give the relation between the quantum TT-system and the quantum lattice Liouville equation, which is the quantized YY-system.Comment: 24 pages, 18 figure

    Discrete integrable systems, positivity, and continued fraction rearrangements

    Full text link
    In this review article, we present a unified approach to solving discrete, integrable, possibly non-commutative, dynamical systems, including the QQ- and TT-systems based on ArA_r. The initial data of the systems are seen as cluster variables in a suitable cluster algebra, and may evolve by local mutations. We show that the solutions are always expressed as Laurent polynomials of the initial data with non-negative integer coefficients. This is done by reformulating the mutations of initial data as local rearrangements of continued fractions generating some particular solutions, that preserve manifest positivity. We also show how these techniques apply as well to non-commutative settings.Comment: 24 pages, 2 figure

    Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain

    Full text link
    The sums of components of the ground states of the O(1) loop model on a cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are expressed in terms of combinatorial numbers. The methods include the introduction of spectral parameters and the use of integrability, a mapping from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe

    Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices

    Full text link
    The integrable loop model with mixed boundary conditions based on the 1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered. The corresponding qKZ equation is introduced and its minimal degree solution described. As a result, the sum of the properly normalized components of the ground state in size L is computed and shown to be equal to the number of Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A refined counting is also considered

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure

    Topologically protected quantum gates for computation with non-Abelian anyons in the Pfaffian quantum Hall state

    Full text link
    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma et al., in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected Controlled-NOT gate which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the pi/8 gate, are also explicitly implemented by quasihole braidings. Instead of the pi/8 gate we try to construct a topologically protected Toffoli gate, in terms of the Controlled-phase gate and CNOT or by a braid-group based Controlled-Controlled-Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g_3.Comment: 6 pages, 7 figures, RevTeX; version 3: introduced section names, new reference added; new comment added about the embedding of the one- and two- qubit gates into a three-qubit syste

    A_k Generalization of the O(1) Loop Model on a Cylinder: Affine Hecke Algebra, q-KZ Equation and the Sum Rule

    Full text link
    We study the A_k generalized model of the O(1) loop model on a cylinder. The affine Hecke algebra associated with the model is characterized by a vanishing condition, the cylindric relation. We present two representations of the algebra: the first one is the spin representation, and the other is in the vector space of states of the A_k generalized model. A state of the model is a natural generalization of a link pattern. We propose a new graphical way of dealing with the Yang-Baxter equation and qq-symmetrizers by the use of the rhombus tiling. The relation between two representations and the meaning of the cylindric relations are clarified. The sum rule for this model is obtained by solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and Section 4.3 adde

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    Possible polarisation and spin dependent aspects of quantum gravity

    Full text link
    We argue that quantum gravity theories that carry a Lie algebraic modification of the Poincare' and Heisenberg algebras inevitably provide inhomogeneities that may serve as seeds for cosmological structure formation. Furthermore, in this class of theories one must expect a strong polarisation and spin dependence of various quantum-gravity effects.Comment: Awarded an "honourable mention" in the 2007 Gravity Research Foundation Essay Competitio

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure
    • …
    corecore