5,520 research outputs found
The solution of the quantum T-system for arbitrary boundary
We solve the quantum version of the -system by use of quantum
networks. The system is interpreted as a particular set of mutations of a
suitable (infinite-rank) quantum cluster algebra, and Laurent positivity
follows from our solution. As an application we re-derive the corresponding
quantum network solution to the quantum -system and generalize it to
the fully non-commutative case. We give the relation between the quantum
-system and the quantum lattice Liouville equation, which is the quantized
-system.Comment: 24 pages, 18 figure
Discrete integrable systems, positivity, and continued fraction rearrangements
In this review article, we present a unified approach to solving discrete,
integrable, possibly non-commutative, dynamical systems, including the - and
-systems based on . The initial data of the systems are seen as cluster
variables in a suitable cluster algebra, and may evolve by local mutations. We
show that the solutions are always expressed as Laurent polynomials of the
initial data with non-negative integer coefficients. This is done by
reformulating the mutations of initial data as local rearrangements of
continued fractions generating some particular solutions, that preserve
manifest positivity. We also show how these techniques apply as well to
non-commutative settings.Comment: 24 pages, 2 figure
Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain
The sums of components of the ground states of the O(1) loop model on a
cylinder or of the XXZ quantum spin chain at Delta=-1/2 (of size L) are
expressed in terms of combinatorial numbers. The methods include the
introduction of spectral parameters and the use of integrability, a mapping
from size L to L+1, and knot-theoretic skein relations.Comment: final version to be publishe
Loop model with mixed boundary conditions, qKZ equation and alternating sign matrices
The integrable loop model with mixed boundary conditions based on the
1-boundary extended Temperley--Lieb algebra with loop weight 1 is considered.
The corresponding qKZ equation is introduced and its minimal degree solution
described. As a result, the sum of the properly normalized components of the
ground state in size L is computed and shown to be equal to the number of
Horizontally and Vertically Symmetric Alternating Sign Matrices of size 2L+3. A
refined counting is also considered
Q-systems, Heaps, Paths and Cluster Positivity
We consider the cluster algebra associated to the -system for as a
tool for relating -system solutions to all possible sets of initial data. We
show that the conserved quantities of the -system are partition functions
for hard particles on particular target graphs with weights, which are
determined by the choice of initial data. This allows us to interpret the
simplest solutions of the Q-system as generating functions for Viennot's heaps
on these target graphs, and equivalently as generating functions of weighted
paths on suitable dual target graphs. The generating functions take the form of
finite continued fractions. In this setting, the cluster mutations correspond
to local rearrangements of the fractions which leave their final value
unchanged. Finally, the general solutions of the -system are interpreted as
partition functions for strongly non-intersecting families of lattice paths on
target lattices. This expresses all cluster variables as manifestly positive
Laurent polynomials of any initial data, thus proving the cluster positivity
conjecture for the -system. We also give an alternative formulation in
terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
Topologically protected quantum gates for computation with non-Abelian anyons in the Pfaffian quantum Hall state
We extend the topological quantum computation scheme using the Pfaffian
quantum Hall state, which has been recently proposed by Das Sarma et al., in a
way that might potentially allow for the topologically protected construction
of a universal set of quantum gates. We construct, for the first time, a
topologically protected Controlled-NOT gate which is entirely based on
quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the
pi/8 gate, are also explicitly implemented by quasihole braidings. Instead of
the pi/8 gate we try to construct a topologically protected Toffoli gate, in
terms of the Controlled-phase gate and CNOT or by a braid-group based
Controlled-Controlled-Z precursor. We also give a topologically protected
realization of the Bravyi-Kitaev two-qubit gate g_3.Comment: 6 pages, 7 figures, RevTeX; version 3: introduced section names, new
reference added; new comment added about the embedding of the one- and two-
qubit gates into a three-qubit syste
A_k Generalization of the O(1) Loop Model on a Cylinder: Affine Hecke Algebra, q-KZ Equation and the Sum Rule
We study the A_k generalized model of the O(1) loop model on a cylinder. The
affine Hecke algebra associated with the model is characterized by a vanishing
condition, the cylindric relation. We present two representations of the
algebra: the first one is the spin representation, and the other is in the
vector space of states of the A_k generalized model. A state of the model is a
natural generalization of a link pattern. We propose a new graphical way of
dealing with the Yang-Baxter equation and -symmetrizers by the use of the
rhombus tiling. The relation between two representations and the meaning of the
cylindric relations are clarified. The sum rule for this model is obtained by
solving the q-KZ equation at the Razumov-Stroganov point.Comment: 43 pages, 22 figures, LaTeX, (ver 2) Introduction rewritten and
Section 4.3 adde
A refined Razumov-Stroganov conjecture II
We extend a previous conjecture [cond-mat/0407477] relating the
Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to
refined numbers of alternating sign matrices. By considering the O(1) loop
model on a semi-infinite cylinder with dislocations, we obtain the generating
function for alternating sign matrices with prescribed positions of 1's on
their top and bottom rows. This seems to indicate a deep correspondence between
observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf
macro
Possible polarisation and spin dependent aspects of quantum gravity
We argue that quantum gravity theories that carry a Lie algebraic
modification of the Poincare' and Heisenberg algebras inevitably provide
inhomogeneities that may serve as seeds for cosmological structure formation.
Furthermore, in this class of theories one must expect a strong polarisation
and spin dependence of various quantum-gravity effects.Comment: Awarded an "honourable mention" in the 2007 Gravity Research
Foundation Essay Competitio
Finite-size left-passage probability in percolation
We obtain an exact finite-size expression for the probability that a
percolation hull will touch the boundary, on a strip of finite width. Our
calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and
the results are expressed in terms of symplectic characters. In the large size
limit, we recover the scaling behaviour predicted by Schramm's left-passage
formula. We also derive a general relation between the left-passage probability
in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the
open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure
- …