14 research outputs found
Bose-Einstein Condensation at a Helium Surface
Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate
fraction at the surface of a helium film at , as a function of
density. Moving from the center of the slab to the surface, the condensate
fraction was found to initially increase with decreasing density to a maximum
value of 0.9 before decreasing. Long wavelength density correlations were
observed in the static structure factor at the surface of the slab. Finally, a
surface dispersion relation was calculated from imaginary-time density-density
correlations.Comment: 8 pages, 5 figure
Bose-Einstein Condensation in a Trap: the Case of a Dense Condensate
We consider the Bose-Einstein condensation of atoms in a trap where the
density of particles is so high that the low density approach of Gross and
Pitaevskii will not be applicable. For this purpose we use the slave boson
representation which is valid for hard-core bosons at any density. This
description leads to the same results as the Gross-Pitaevskii approach in the
low density limit, but for higher densities, it predicts the depletion of the
order parameter field condensate in the regions where the density of the atomic
cloud is high.Comment: 6 pages RevTeX, 3 eps-figure
Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas
We present arguments that the low density surface region of self-bounded
superfluid He systems is an inhomogeneous dilute Bose gas, with almost all
of the atoms occupying the same single-particle state at . Numerical
evidence for this complete Bose-Einstein condensation was first given by the
many-body variational calculations of He droplets by Lewart, Pandharipande
and Pieper in 1988. We show that the low density surface region can be treated
rigorously using a generalized Gross-Pitaevskii equation for the Bose order
parameter.Comment: 4 pages, 1 Postscript figur
Restoration of Overlap Functions and Spectroscopic Factors in Nuclei
An asymptotic restoration procedure is applied for analyzing bound--state
overlap functions, separation energies and single--nucleon spectroscopic
factors by means of a model one--body density matrix emerging from the Jastrow
correlation method in its lowest order approximation for and
nuclei . Comparison is made with available experimental data and mean--field
and natural orbital representation results.Comment: 5 pages, RevTeX style, to be published in Physical Review
Effects of Short Range Correlations on Ca Isotopes
The effect of Short Range Correlations (SRC) on Ca isotopes is studied using
a simple phenomenological model. Theoretical expressions for the charge
(proton) form factors, densities and moments of Ca nuclei are derived. The role
of SRC in reproducing the empirical data for the charge density differences is
examined. Their influence on the depletion of the nuclear Fermi surface is
studied and the fractional occupation probabilities of the shell model orbits
of Ca nuclei are calculated. The variation of SRC as function of the mass
number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at
[email protected] Physical Review C in prin
One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca
The one body density matrix, momentum distribution, natural orbits and quasi
hole states of 16O and 40Ca are analyzed in the framework of the correlated
basis function theory using state dependent correlations with central and
tensor components. Fermi hypernetted chain integral equations and single
operator chain approximation are employed to sum cluster diagrams at all
orders. The optimal trial wave function is determined by means of the
variational principle and the realistic Argonne v8' two-nucleon and Urbana IX
three-nucleon interactions. The correlated momentum distributions are in good
agreement with the available variational Monte Carlo results and show the well
known enhancement at large momentum values with respect to the independent
particle model. Diagonalization of the density matrix provides the natural
orbits and their occupation numbers. Correlations deplete the occupation number
of the first natural orbitals by more than 10%. The first following ones result
instead occupied by a few percent. Jastrow correlations lower the spectroscopic
factors of the valence states by a few percent (~1-3%) and an additional ~8-12%
depletion is provided by tensor correlations. It is confirmed that short range
correlations do not explain the spectroscopic factors extracted from (e,e'p)
experiments. 2h-1p perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.
Theory of Bose-Einstein condensation in trapped gases
The phenomenon of Bose-Einstein condensation of dilute gases in traps is
reviewed from a theoretical perspective. Mean-field theory provides a framework
to understand the main features of the condensation and the role of
interactions between particles. Various properties of these systems are
discussed, including the density profiles and the energy of the ground state
configurations, the collective oscillations and the dynamics of the expansion,
the condensate fraction and the thermodynamic functions. The thermodynamic
limit exhibits a scaling behavior in the relevant length and energy scales.
Despite the dilute nature of the gases, interactions profoundly modify the
static as well as the dynamic properties of the system; the predictions of
mean-field theory are in excellent agreement with available experimental
results. Effects of superfluidity including the existence of quantized vortices
and the reduction of the moment of inertia are discussed, as well as the
consequences of coherence such as the Josephson effect and interference
phenomena. The review also assesses the accuracy and limitations of the
mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references,
new figures, various changes and corrections, for publ. in Rev. Mod. Phys.,
available also at http://www-phys.science.unitn.it/bec/BEC.htm
Triplet pairing in fermionic droplets
We have investigated, in the L-S coupling scheme, the appearance of triplet pairing in fermionic droplets in which a single nl shell is active. The method is applied to a constant-strength model, for which we discuss the different phase transitions that take place as the number of particles in the shell is varied. Drops of 3He atoms can be plausible physical scenarios for the realization of the model