58 research outputs found

    Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus

    Get PDF
    The unicellular, simply shaped desmid Netrium digitus inhabiting acid bog ponds grows in two phases. Prior to division, the cell elongates at its central zone, whereas in a second phase, polar tip growth occurs. Electron microscopy demonstrates that Netrium is surrounded by a morphologically homogeneous cell wall, which lacks pores. Immunocytochemical and biochemical analyses give insight into physical wall properties and, thus, into adaptation to the extreme environment. The monoclonal antibodies JIM5 and JIM7 directed against pectic epitopes with different degrees of esterification label preferentially growing wall zones in Netrium. In contrast, 2F4 marks the cell wall only after experimental de-esterification. Electron energy loss spectroscopy reveals Ca-binding capacities of pectins and gives indirect evidence for the degree of their esterification. An antibody raised against Netrium mucilage is not only specific to mucilage but also recognizes wall components in transmission electron microscopy and dot blots. These results indicate a smooth transition between mucilage and the cell wall in Netrium

    Genetic improvement of tomato by targeted control of fruit softening

    Get PDF
    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase

    EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata

    Get PDF
    BACKGROUND: Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS: This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE: Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup

    The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum

    No full text
    Plant cell walls are essential for proper growth, development, and interaction with the environment. It is generally accepted that land plants arose from aquatic ancestors which are sister groups to the charophycean algae (i.e., Streptophyta), and study of wall evolution during this transition promises insight into structure-function relationships of wall components. In this paper, we explore wall evolutionary history by studying the incorporation of pectin polymers into cell walls of the model organism Penium margaritaceum, a simple single-cell desmid. This organism produces only a primary wall consisting of three fibrillar or fibrous layers, with the outermost stratum terminating in distinct, calcified projections. Extraction of isolated cell walls with trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid yielded a homogalacturonan (HGA) that was partially methyl esterified and equivalent to that found in land plants. Other pectins common to land plants were not detected, although selected components of some of these polymers were present. Labeling with specific monoclonal antibodies raised against higher-plant HGA epitopes (e.g., JIM5, JIM7, LM7, 2F4, and PAM1) demonstrated that the wall complex and outer layer projections were composed of the HGA which was significantly calcium complexed. JIM5 and JIM7 labeling suggested that highly methyl esterified HGA was secreted into the isthmus zone of dividing cells, the site of active wall secretion. As the HGA was displaced to more polar regions, de-esterification in a non-blockwise fashion occurred. This, in turn, allowed for calcium binding and the formation of the rigid outer wall layer. The patterning of HGA deposition provides interesting insights into the complex process of pectin involvement in the development of the plant cell wall. © 2006 Springer-Verlag
    corecore