232 research outputs found

    Passenger ride quality response to an airborne simulator environment

    Get PDF
    The present study was done aboard a special aircraft able to effect translations through the center of gravity with a minimum of pitch and roll. The aircraft was driven through controlled motions by an on-board analog computer. The input signal was selectively filtered Gaussian noise whose power spectra approximated that of natural turbulence. This input, combined with the maneuvering capabilities of this aircraft, resulted in an extremely realistic simulation of turbulent flight. The test flights also included varying bank angles during turns. Subjects were chosen from among NASA Flight Research Center personnel. They were all volunteers, were given physical examinations, and were queried about their attitudes toward flying before final selection. In profile, they were representative of the general flying public. Data from this study include (1) a basis for comparison with previous commercial flights, that is, motion dominated by vertical acceleration, (2) extension to motion dominated by lateral acceleration, and (3) evaluation of various bank angles

    On Similarities between Inference in Game Theory and Machine Learning

    No full text
    In this paper, we elucidate the equivalence between inference in game theory and machine learning. Our aim in so doing is to establish an equivalent vocabulary between the two domains so as to facilitate developments at the intersection of both fields, and as proof of the usefulness of this approach, we use recent developments in each field to make useful improvements to the other. More specifically, we consider the analogies between smooth best responses in fictitious play and Bayesian inference methods. Initially, we use these insights to develop and demonstrate an improved algorithm for learning in games based on probabilistic moderation. That is, by integrating over the distribution of opponent strategies (a Bayesian approach within machine learning) rather than taking a simple empirical average (the approach used in standard fictitious play) we derive a novel moderated fictitious play algorithm and show that it is more likely than standard fictitious play to converge to a payoff-dominant but risk-dominated Nash equilibrium in a simple coordination game. Furthermore we consider the converse case, and show how insights from game theory can be used to derive two improved mean field variational learning algorithms. We first show that the standard update rule of mean field variational learning is analogous to a Cournot adjustment within game theory. By analogy with fictitious play, we then suggest an improved update rule, and show that this results in fictitious variational play, an improved mean field variational learning algorithm that exhibits better convergence in highly or strongly connected graphical models. Second, we use a recent advance in fictitious play, namely dynamic fictitious play, to derive a derivative action variational learning algorithm, that exhibits superior convergence properties on a canonical machine learning problem (clustering a mixture distribution)

    Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films

    Get PDF
    We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems

    Feasibility of an Outpatient Training Program after COVID-19

    Get PDF
    Long-term physical consequences of coronavirus disease 2019 (COVID-19) are currently being reported. As a result, the focus is turning towards interventions that support recovery after hospitalization. To date, the feasibility of an outpatient program for people recovering from COVID-19 has not been investigated. This study presents data for a physiotherapy-led, comprehensive outpatient pulmonary rehabilitation (PR) program. Patients were recruited after hospital discharge. Training consisted of twice weekly, interval-based aerobic cycle endurance (ACE) training, followed by resistance training (RT); 60–90 min per session at intensities of 50% peak work rate; education and physical activity coaching were also provided. Feasibility outcomes included: recruitment and dropout rates, number of training sessions undertaken, and tolerability for dose and training mode. Of the 65 patients discharged home during the study period, 12 were successfully enrolled onto the program. Three dropouts (25%) were reported after 11–19 sessions. Tolerability of interval-based training was 83% and 100% for exercise duration of ACE and RT, respectively; 92% for training intensity, 83% progressive increase of intensity, and 83% mode in ACE. We tentatively suggest from these preliminary findings that the PR protocol used may be both feasible, and confer benefits to a small subgroup of patients recovering from COVID-19

    Prognosis in patients with myocardial infarction with ST-elevation depending on the timing of interventional revascularization

    Get PDF
    Проверена е прогнозата (болничния и следболничния леталитет до края на 6-ия месец) при 300 болни (212 мъже и 88 жени) с първи миокарден инфаркт със ST- елевация (STEMI) на средна възраст 62.9 год. в зависимост от срока на извършената първична коронарна интервенция (PCI) след началото на симптомите. В зависимост от срока на извършената РСІ болните са разделени на 4 групи: до 3-ия, до 6-ия, до 12-ия и до 24-ия час след началото на инфаркта. Болничният леталитет за всички болни е 6.3%, a до края на 6-ия месец - 13.3%, еднакъв при І-ва и ІІ-ра група и достоверно по-малък, отколкото при ІІІ-та и ІV-та група, по-голям при жените, при болните над 65 г., с ФИ <35.0% и с тромботична оклузия на LM и LAD.The prognosis (in-hospital and post-hospitalization lethality by the end of the 6th moth) of 300 patients (212 men and 88 women) with a first myocardial infarction with ST-elevation (STEMI) at an average age of 62.9 years was studied depending on the timing of the conducted primary coronary intervention (PCI) after the onset of symptoms. Depending on the timing of the conducted PCI, the patients were divided into 4 groups: by the 3rd, 6th, 12th, and 24th hour after the onset of the infarction. The patients` in-hospital lethality was 6.3%, and that by the end of the 6th month - 13.3%. It was the same for groups I and II and significantly lower than in groups III and IV; higher in women, in patients over 65 years of age, with ejection fraction (EF) <35.0% and with thrombotic occlusion of LM and LAD

    Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    Get PDF
    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond

    One year follow-up of physical performance and quality of life in patients surviving COVID-19: a prospective cohort study

    Get PDF
    INTRODUCTION: The coronavirus disease (COVID-19) continues to affect many countries globally, with the long-term impact of the disease now being recognized. According to the latest research, some of the affected individuals continue to experience functional limitations, reduced physical performance and impaired health-related quality of life (HRQoL) even after eight months. This prospective cohort study aimed to describe the longer-term recovery of physical performance and HRQoL in COVID-19 survivors over one year. METHOD: A cohort (n = 43; 32-84 years old) hospitalized with COVID-19 between March and June 2020 was followed over one year and assessed at three time points: hospital discharge, 3 months and 12 months post-admission. Participants experienced mild (10/43) to critical (6/43) pneumonia and stayed in the hospital for a median of 10 days (IQR 9). Participants were assessed for physical performance (six-minute walk test), HRQoL (EQ-5D-5L), COVID-19 related limitations in functionality (PCFS), hospital-related anxiety and depression (HADS-A/-D), lung function (FEV1, FVC) and dyspnea during activity (mMRC). All assessments were conducted by physiotherapists trained in cardio-respiratory rehabilitation. RESULTS: After discharge, 8/34 showed reduced physical performance, 9/42 had lower HRQoL and 14/32 had COVID-19 induced limitations in functionality on the PCFS scale. Physical performance did not change significantly between discharge and 12-month follow-up, but 15/34 participants showed clinically relevant improvements in walking distance (>30 m). However, 16/34 had a decreased walking distance >30 m when comparing 3-month to 12-month follow-up. At 12 months, 12/41 of participants still perceived COVID-19 related limitations in daily life on the PCFS scale. For HRQoL, 12/41 participants still perceived moderate-to-severe symptoms of pain and discomfort and 13/41 slight-to-severe symptoms of anxiety and depression. CONCLUSION: This cohort of adult patients hospitalized for mild to severe COVID-19 in Switzerland was generally mildly affected but still reported some limitations after one year. These results offer preliminary indications for ongoing support after hospitalization and point towards the need for specific, individualized follow-up to support their recovery. ClinicalTrials.gov (NCT04375709

    Anesthesia assessment based on ICA permutation entropy analysis of two-channel EEG signals

    Get PDF
    Inaccurate assessment may lead to inaccurate levels of dosage given to the patients that may lead to intraoperative awareness that is caused by under dosage during surgery or prolonged recovery in patients that is caused by over dosage after the surgery is done. Previous research and evidence show that assessing anesthetic levels with the help of electroencephalography (EEG) signals gives an overall better aspect of the patient’s anesthetic state. This paper presents a new method to assess the depth of anesthesia (DoA) using Independent Component Analysis (ICA) and permutation entropy analysis. ICA is performed on two-channel EEG to reduce the noise then Wavelet and permutation entropy are applied on these channels to extract the features. A linear regression model was used to build the new DoA index using the selected features. The new index designed by proposed methods performs well under low signal quality and it was overall consistent in most of the cases where Bispectral index (BIS) may fail to provide any valid value

    In Vivo Biotransformation of 3,3′,4,4′-Tetrachlorobiphenyl by Whole Plants−Poplars and Switchgrass

    Get PDF
    Polychlorinated biphenyls (PCBs) are widely distributed persistent organic pollutants. In vitro research has shown that plant cell cultures might transform lower chlorinated congeners to hydroxylated PCBs, but there are few studies on in vivo metabolism of PCBs by intact whole plants. In this research, poplar plants (Populus deltoides × nigra, DN34) and switchgrass (Panicum vigratum, Alamo) were hydroponically exposed to 3,3′,4,4′-tetrachlorobiphenyl (CB77). Metabolism in plants occurred rapidly, and metabolites were detected after only a 24 h exposure. Rearrangement of chlorine atoms and dechlorination of CB77 by plants was unexpectedly observed. In addition, poplars were able to hydroxylate CB77 and the metabolite 6-hydroxy-3,3′,4,4′-tetrachlorobiphenyl (6-OH-CB77) was identified and quantified. Hybrid poplar was able to hydroxylate CB77, but switchgrass was not, suggesting that enzymatic transformations are plant specific. Sulfur-containing metabolites (from the action of sulfotransferases) were investigated in this study, but they were not detected in either poplar or switchgrass

    Enhanced Growth and Osteogenic Differentiation of Human Osteoblast-Like Cells on Boron-Doped Nanocrystalline Diamond Thin Films

    Get PDF
    Intrinsic nanocrystalline diamond (NCD) films have been proven to be promising substrates for the adhesion, growth and osteogenic differentiation of bone-derived cells. To understand the role of various degrees of doping (semiconducting to metallic-like), the NCD films were deposited on silicon substrates by a microwave plasma-enhanced CVD process and their boron doping was achieved by adding trimethylboron to the CH4:H2 gas mixture, the B∶C ratio was 133, 1000 and 6700 ppm. The room temperature electrical resistivity of the films decreased from >10 MΩ (undoped films) to 55 kΩ, 0.6 kΩ, and 0.3 kΩ (doped films with 133, 1000 and 6700 ppm of B, respectively). The increase in the number of human osteoblast-like MG 63 cells in 7-day-old cultures on NCD films was most apparent on the NCD films doped with 133 and 1000 ppm of B (153,000±14,000 and 152,000±10,000 cells/cm2, respectively, compared to 113,000±10,000 cells/cm2 on undoped NCD films). As measured by ELISA per mg of total protein, the cells on NCD with 133 and 1000 ppm of B also contained the highest concentrations of collagen I and alkaline phosphatase, respectively. On the NCD films with 6700 ppm of B, the cells contained the highest concentration of focal adhesion protein vinculin, and the highest amount of collagen I was adsorbed. The concentration of osteocalcin also increased with increasing level of B doping. The cell viability on all tested NCD films was almost 100%. Measurements of the concentration of ICAM-1, i.e. an immunoglobuline adhesion molecule binding inflammatory cells, suggested that the cells on the NCD films did not undergo significant immune activation. Thus, the potential of NCD films for bone tissue regeneration can be further enhanced and tailored by B doping and that B doping up to metallic-like levels is not detrimental for cells
    corecore