437 research outputs found
Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback
The recently demonstrated control over light distribution through turbid
media based on real-time three-dimensional optoacoustic feedback has offered
promising prospects to interferometrically focus light within scattering
objects. Nevertheless, the focusing capacity of the feedback-based approach is
strongly conditioned by the number of effectively resolvable optical modes
(speckles). In this letter, we experimentally tested the light intensity
enhancement achieved with optoacoustic feedback measurements from different
sizes of absorbing microparticles. The importance of the obtained results is
discussed in the context of potential signal enhancement at deep locations
within a scattering medium where the effective speckle sizes approach the
minimum values dictated by optical diffraction
High resolution tumor targeting in living mice by means of multispectral optoacoustic tomography
BACKGROUND: Tumor targeting is of high clinical and biological relevance, and major efforts have been made to develop molecular imaging technologies for visualization of the disease markers in tissue. Of particular interest is apoptosis which has a profound role within tumor development and has significant effect on cancer malignancy. METHODS: Herein, we report on targeting of phosphatidylserine-exposing cells within live tumor allograft models using a synthetic near infrared zinc(II)-dipicolylamine probe. Visualization of the probe biodistribution is performed with whole body multispectral optoacoustic tomography (MSOT) system and subsequently compared to results attained by planar and tomographic fluorescence imaging systems. RESULTS: Compared to whole body optical visualization methods, MSOT attains remarkably better imaging capacity by delivering high-resolution scans of both disease morphology and molecular function in real time. Enhanced resolution of MSOT clearly showed that the probe mainly localizes in the vessels surrounding the tumor, suggesting that its tumor selectivity is gained by targeting the phosphatidylserine exposed on the surface of tumor vessels. CONCLUSIONS: The current study demonstrates the high potential of MSOT to broadly impact the fields of tumor diagnostics and preclinical drug development
High-Throughput Platform for Optoacoustic Probing of Genetically Encoded Calcium Ion Indicators
Functional optoacoustic (OA) imaging assisted with genetically encoded calcium ion indicators (GECIs) holds promise for imaging large-scale neuronal activity at depths and spatiotemporal resolutions not attainable with existing optical microscopic techniques. However, currently available GECIs optimized for fluorescence (FL) imaging lack sufficient contrast for OA imaging and respond at wavelengths having limited penetration into the mammalian brain. Here we present an imaging platform capable of rapid assessment and cross-validation between OA and FL responses of sensor proteins expressed in Escherichia coli colonies. The screening system features optimized pulsed light excitation combined with ultrasensitive ultrasound detection to mitigate photobleaching while further allowing the dynamic characterization of calcium ion responses with millisecond precision. Targeted probing of up to six individual colonies per second in both calcium-loaded and calcium-unloaded states was possible with the system. The new platform greatly facilitates optimization of absorption-based labels, thus setting the stage for directed evolution of OA GECIs
Wavelength-dependent optoacoustic imaging probes for NMDA receptor visualisation
The cellular localisation and binding specificity of two NMDAR-targeted near-IR imaging probes has been examined by microscopy, followed by exemplification of MSOT to monitor simulated glutamate bursts in cellulo and a preliminary study in mice observing the signal in the brain
Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics and Biodistribution in Multiple Organs
The characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT). A spatial resolution of approximately 150 µm through mouse cross-sections allowed us to image blood vessels, the kidneys, the liver and the gall bladder. In particular, MSOT was employed to characterize the removal of indocyanine green from the systemic circulation and its time-resolved uptake in the liver and gallbladder. Furthermore, it was possible to track the uptake of a carboxylate dye in separate regions of the kidneys. The results demonstrate the acquisition of agent concentration metrics at rates of 10 samples per second at a single wavelength and 17 s per multispectral sample with 10 signal averages at each of 5 wavelengths. Overall, such imaging performance introduces previously undocumented capabilities of fast, high resolution in vivo imaging of the fate of optical agents for drug discovery and basic biological research
Multimodal assessment of non-alcoholic fatty liver disease with transmission-reflection optoacoustic ultrasound.
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients
Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo
Photoacoustic tomography (PAT) has demonstrated versatile biomedical applications, ranging from tracking single cells to monitoring whole-body dynamics of small animals and diagnosing human breast cancer. Currently, PAT has two major implementations: photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM). PACT uses a multi-element ultrasonic array for parallel detection, which is relatively complex and expensive. In contrast, PAM requires point-by-point scanning with a single-element detector, which has a limited imaging throughput. The trade-off between the system cost and throughput demands a new imaging method. To this end, we have developed photoacoustic topography through an ergodic relay (PATER). PATER can capture a wide-field image with only a single-element ultrasonic detector upon a single laser shot. This protocol describes the detailed procedures for PATER system construction, including component selection, equipment setup and system alignment. A step-by-step guide for in vivo imaging of a mouse brain is provided as an example application. Data acquisition, image reconstruction and troubleshooting procedures are also elaborated. It takes ~130 min to carry out this protocol, including ~60 min for both calibration and snapshot wide-field data acquisition using a laser with a 2-kHz pulse repetition rate. PATER offers low-cost snapshot wide-field imaging of fast dynamics, such as visualizing blood pulse wave propagation and tracking melanoma tumor cell circulation in mice in vivo. We envision that PATER will have wide biomedical applications and anticipate that the compact size of the setup will allow it to be further developed as a wearable device to monitor human vital signs
Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe
Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales
Topical Application of Activity-based Probes for Visualization of Brain Tumor Tissue
Several investigators have shown the utility of systemically delivered optical imaging probes to image tumors in small animal models of cancer. Here we demonstrate an innovative method for imaging tumors and tumor margins during surgery. Specifically, we show that optical imaging probes topically applied to tumors and surrounding normal tissue rapidly differentiate between tissues. In contrast to systemic delivery of optical imaging probes which label tumors uniformly over time, topical probe application results in rapid and robust probe activation that is detectable as early as 5 minutes following application. Importantly, labeling is primarily associated with peri-tumor spaces. This methodology provides a means for rapid visualization of tumor and potentially infiltrating tumor cells and has potential applications for directed surgical excision of tumor tissues. Furthermore, this technology could find use in surgical resections for any tumors having differential regulation of cysteine cathepsin activity
- …