449 research outputs found

    Pentacene in 1,3,5-Tri(1-naphtyl)benzene: A Novel Standard for Transient EPR Spectroscopy at Room Temperature

    Get PDF
    Testing and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the B1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy

    JCAS-Enabled Sensing as a Service in 6th-Generation Mobile Communication Networks

    Full text link
    The introduction of new types of frequency spectrum in 6G technology facilitates the convergence of conventional mobile communications and radar functions. Thus, the mobile network itself becomes a versatile sensor system. This enables mobile network operators to offer a sensing service in addition to conventional data and telephony services. The potential benefits are expected to accrue to various stakeholders, including individuals, the environment, and society in general. The paper discusses technological development, possible integration, and use cases, as well as future development areas

    Effect of the cation structure on the properties of homobaric imidazolium ionic liquids

    Get PDF
    In this work we investigate the structure–property relationships in a series of alkylimidazolium ionic liquids with almost identical molecular weight. Using a combination of theoretical calculations and experimental measurements, we have shown that re-arranging the alkyl side chain or adding functional groups results in quite distinct features in the resultant ILs. The synthesised ILs, although structurally very similar, cover a wide spectrum of properties ranging from highly fluid, glass forming liquids to high melting point crystalline salts. Theoretical ab initio calculations provide insight on minimum energy orientations for the cations, which then are compared to experimental X-ray crystallography measurements to extract information on hydrogen bonding and to verify our understanding of the studied structures. Molecular dynamics simulations of the simplest (core) ionic liquids are used in order to help us interpret our experimental results and understand better why methylation of C2 position of the imidazolium ring results in ILs with such different properties compared to their non-methylated analogues

    Advanced Visualization Techniques for Self-organizing Maps with Graph-Based Methods

    Full text link

    Effects of Cationic Species in Salts on the Electrical Conductivity of Doped PEDOT:PSS Films

    Get PDF
    The electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films with four salts that have various cations but the same bis(trifluoromethanesulfonyl)amide (TFSI) anion was studied. We found that doping salts of small-sized cations led to better conductivity because of the improved crystalline order and p-doped level of PEDOT, as revealed by the grazing-incidence wide-angle X-ray scattering (GIWAXS) and UV-vis spectrum. This phenomenon can be rationalized with the fact that small-sized cations with stronger Coulombic interactions can lead to high doping and rearrangement of PEDOT:PSS. These findings will help to develop recipes based on the PEDOT:PSS/salt composite toward the applications for printed flexible electronics

    An “interaction-mediating” strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries

    Get PDF
    Aqueous redox flow batteries using electroactive organic materials are currently attracting significant attention. However, the influence of supporting electrolytes on the aqueous solubility, electrochemical reversibility and chemical stability of the organic components has rarely been investigated. Here, a new electrolyte design strategy towards enhanced solubility and chemical stability of active materials is proposed by using interaction-mediating species. 3 molality aqueous imidazolium chlorides, with high ionic conductivity and water-like flowability, enable a record aqueous solubility of 4.3 M for a commercially available nitroxyl radical and reversible 2e^{-} reaction of unmodified methyl viologen at moderate concentrations. With 0.6 M electrolyte, flow cell shows remarkable chemical stability of the nitroxyl radical, excellent cycling stability over 250 cycles at 80 mA cm^{-2}, and a peak power density of 121.6 mW cm^{-2} at 175 mA cm^{-2}. Furthermore, nitroxyl radical catholyte with a concentration of 3 M is tested in a flow cell. It maintains an impressive steady energy efficiency of 65% at 30 mA cm^{-2}. This work paves a new way for the development of high performance aqueous electrolytes based on organic materials

    Music Information Technology and Professional Stakeholder Audiences: Mind the Adoption Gap

    Get PDF
    The academic discipline focusing on the processing and organization of digital music information, commonly known as Music Information Retrieval (MIR), has multidisciplinary roots and interests. Thus, MIR technologies have the potential to have impact across disciplinary boundaries and to enhance the handling of music information in many different user communities. However, in practice, many MIR research agenda items appear to have a hard time leaving the lab in order to be widely adopted by their intended audiences. On one hand, this is because the MIR field still is relatively young, and technologies therefore need to mature. On the other hand, there may be deeper, more fundamental challenges with regard to the user audience. In this contribution, we discuss MIR technology adoption issues that were experienced with professional music stakeholders in audio mixing, performance, musicology and sales industry. Many of these stakeholders have mindsets and priorities that differ considerably from those of most MIR academics, influencing their reception of new MIR technology. We mention the major observed differences and their backgrounds, and argue that these are essential to be taken into account to allow for truly successful cross-disciplinary collaboration and technology adoption in MIR

    Dynamics, cation conformation and rotamers in guanidinium ionic liquids with ether groups

    Get PDF
    Ionic liquids are modern materials with a broad range of applications, including electrochemical devices, the exploitation of sustainable resources and chemical processing. Expanding the chemical space to include novel ion classes allows for the elucidation of novel structure-property relationships and fine tuning for specific applications. We prepared a set of ionic liquids based on the sparsely investigated pentamethyl guanidinium cation with a 2-ethoxy-ethyl side chain in combination with a series of frequently used anions. The resulting properties are compared to a cation with a pentyl side chain lacking ether functionalization. We measured the thermal transitions and transport properties to estimate the performance and trends of this cation class. The samples with imide-type anions form liquids at ambient temperature, and show good transport properties, comparable to imidazolium or ammonium ionic liquids. Despite the dynamics being significantly accelerated, ether functionalization of the cation favors the formation of crystalline solids. Single crystal structure analysis, ab initio calculations and variable temperature nuclear magnetic resonance measurements (VT-NMR) revealed that cation conformations for the ether- and alkyl-chain-substituted are different in both the solid and liquid states. While ether containing cations adopt compact, curled structures, those with pentyl side chains are linear. The Eyring plot revealed that the curled conformation is accompanied by a higher activation energy for rotation around the carbon-nitrogen bonds, due to the coordination of the ether chain as observed by VT-NMR

    On the accuracy and usefulness of analytic energy models for contemporary multicore processors

    Full text link
    This paper presents refinements to the execution-cache-memory performance model and a previously published power model for multicore processors. The combination of both enables a very accurate prediction of performance and energy consumption of contemporary multicore processors as a function of relevant parameters such as number of active cores as well as core and Uncore frequencies. Model validation is performed on the Sandy Bridge-EP and Broadwell-EP microarchitectures. Production-related variations in chip quality are demonstrated through a statistical analysis of the fit parameters obtained on one hundred Broadwell-EP CPUs of the same model. Insights from the models are used to explain the performance- and energy-related behavior of the processors for scalable as well as saturating (i.e., memory-bound) codes. In the process we demonstrate the models' capability to identify optimal operating points with respect to highest performance, lowest energy-to-solution, and lowest energy-delay product and identify a set of best practices for energy-efficient execution
    • …
    corecore