2,610 research outputs found

    Phase-dependent photometric and spectroscopic characterization of the MASTER-Net Optical Transient J212444.87+321738.3: an oxygen rich Mira

    Full text link
    We describe the time-dependent properties of a new spectroscopically confirmed Mira variable, which was discovered in 2013 as MASTER-Net Optical Transient (OT) J212444.87+321738.3 towards the Cygnus constellation. We have performed long-term optical/near-infrared (NIR) photometric and spectroscopic observations to characterize the object. From the optical/NIR light curves, we estimate a variability period of 465 ±\pm 30 days. The wavelength-dependent amplitudes of the observed light-curves range from Δ\DeltaI\sim4 mag to Δ\DeltaK\sim1.5 mag. The (J-K) color-index varies from 1.78 to 2.62 mag over phases. Interestingly, a phase lag of \sim60 days between optical and NIR light curves is also seen, as in other Miras. Our optical/NIR spectra show molecular features of TiO, VO, CO, and strong water bands which are a typical signature of oxygen-rich Mira. We rule out S- or C-type as ZrO bands at 1.03 and 1.06 μ\mum and C2C_2 band at 1.77 μ\mum are absent. We estimate the effective temperature of the object from the SED, and distance and luminosity from standard Period-Luminosity relations. The optical/NIR spectra display time-dependent atomic and molecular features (e.g. TiO, NaI, CaI, H2_2O,CO), as commonly observed in Miras. Such spectroscopic observations are useful for studying pulsation variability in Miras.Comment: 17 pages, 6 figures, accepted for publication in The Astronomical Journa

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised

    Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System

    Full text link
    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5<η<2.21.5 < \mid\eta\mid < 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 μ\murad pitch arranged in eight η\eta-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO2_{2} 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 μ\murad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ±\pm 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 ±\pm 1.6 (stat)] μ\murad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by \sim 10 μ\murad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ±\pm 2.5 stat] μ\murad is measured, consistent with the expected resolution of strip-pitch/12\sqrt{12} = 131.3 μ\murad. Other η\eta-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci. Symposium, Seattle, WA, reference adde

    Discrete population balance models of random agglomeration and cleavage in polymer pyrolysis

    Get PDF
    The processes of random agglomeration and cleavage (both of which are important for the development of new models of polymer combustion, but are also applicable in a wide range of fields including atmospheric physics, radiation modelling and astrophysics) are analysed using population balance methods. The evolution of a discrete distribution of particles is considered within this framework, resulting in a set of ordinary differential equations for the individual particle concentrations. Exact solutions for these equations are derived, together with moment generating functions. Application of the discrete Laplace transform (analogous to the Z-transform) is found to be effective in these problems, providing both exact solutions for particle concentrations and moment generating functions. The combined agglomeration-cleavage problem is also considered. Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable steady state has been identified and computed

    A Concise Review Based on Analytical Method Development and Validation of Apremilast in Bulk and Marketed Dosage Form

    Get PDF
    Apremilast is used for treatment of psoriasis and psoriatic arthritis. It&nbsp;may&nbsp;also&nbsp;be&nbsp;beneficial&nbsp;for&nbsp;other&nbsp;inflammatory diseases&nbsp;relevant to&nbsp;the&nbsp;immune&nbsp;system. The&nbsp;drug&nbsp;functions as&nbsp;a selective enzyme phosphodiesterase&nbsp;4&nbsp;(PDE4) inhibitor and avoids the spontaneous development of&nbsp;TNF-alpha&nbsp;from&nbsp;human&nbsp;synovial&nbsp;rheumatoid&nbsp;cells. The present review assesses the different approaches for evaluation of apremilast in bulk material as well as different formulations. A concise review consists of compile and discuss about over 30 methods for analysing apremilast in the biological matrices, the samples of bulk and in different dosage formulations including HPLC, HPTLC, UPLC, LC-MS and UV-spectrophotometry. A concise review represents the compilation and discussion of about more than 30 analytical methods which includes HPLC, HPTLC, UPLC, LC-MS and UV-Spectrophotometry methods implemented for investigation of apremilast in biological matrices, bulk samples and in different dosage formulations. This detailed review will be of great help to the researcher who is working on apremilast. Keywords: Apremilast; Analytical Profile; HPLC; HPTLC; Bioanalytical; Stability indicatin

    Dual mechanism model for fluid particle breakup in the entire turbulent spectrum

    Get PDF
    This work provides an in-depth understanding of different breakup mechanisms for fluid particles in turbulent flows. All the disruptive and cohesive stresses are considered for the entire turbulent energy spectrum and their contributions to the breakup are evaluated. A new modeling framework is presented that bridges across turbulent subranges. The model entails different mechanisms for breakup by abandoning the classical limitation of inertial models. The predictions are validated with experiments encompassing both breakup regimes for droplets stabilized by internal viscosity and interfacial tension down to the micrometer length scale, which covers both the inertial and dissipation subranges. The model performance ensures the reliability of the framework, which involves different mechanisms. It retains the breakup rate for inertial models, improves the predictions for the transition region from inertia to dissipation, and bridges seamlessly to Kolmogorov-sized droplets
    corecore