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Abstract: The processes of random agglomeration and cleavage (both of which are important for the 
development of new models of polymer combustion, but are also applicable in a wide range of fields 
including atmospheric physics, radiation modelling and astrophysics) are analysed using population 

balance methods. The evolution of a discrete distribution of particles is considered within this 

framework, resulting in a set of ordinary differential equations for the individual particle 
concentrations. Exact solutions for these equations are derived, together with moment generating 

functions. Application of the discrete Laplace transform (analogous to the Z-transform) is found to 

be effective in these problems, providing both exact solutions for particle concentrations and moment 
generating functions. The combined agglomeration-cleavage problem is also considered. 

Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable 

steady state has been identified and computed. 

Keywords: agglomeration; recombination; cleavage; scission; population balance; polymer 
combustion 

Nomenclature 

Subscripts i and j are used to label particle size or as indices for general sequences. Other subscripted 
variables are defined separately below. 

Boldface characters are used to denote sequences, as in  



1jjaa ; 
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L(a) or a~  is used to denote the discrete Laplace transform of the sequence a; 

|| a  Equivalent to the series 


1j
ja ; 

The discrete convolution operator is denoted by *. 

Main Roman Symbols 

c2  Coefficient of variation 
ka  Agglomeration rate function (s−1) 
kc  Cleavage rate function (s−1) 
nj  The ratio of number of particles of size j to the initial number of particles in the population 
N  The total number of particles in the population 
t  Time (s) 

Greek Symbols 

δi,j  Kronecker’s delta 
ε  The ratio of agglomeration rate to cleavage rate (ka/kc) 
μm  The mth. moment of a sequence 

2   Population variance 
  Dimensionless time, defined in terms of a cleavage or agglomeration rate function k as 

kdtd /  

 

1. Introduction 

The processes of particle agglomeration and cleavage have important applications in many 
fields including the combustion of solid polymers, the development of atmospheric pollutants and 
water droplets, soot formation, the evolution of snow particles in blizzards and also astrophysics. 
Cleavage (or scission) occurs when large particles (or groups of smaller particles) split to form 
smaller particles. Agglomeration is the reverse of cleavage: smaller particles join to form larger 
particles. These processes are illustrated in Figure 1.  

+
Cleavage

Agglomeration
 

Figure 1. Illustration of cleavage and agglomeration. 
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Population balance (PB) approaches to modelling these phenomena are based on statistical 
arguments applied to large ensembles of particles. In certain circumstances, this leads to a system of 
equations that describe the evolution of particle number distributions. In other circumstances, a 
purely computational approach based on the Monte-Carlo method is either required (through the 
complex nature of the particular process being analysed) or preferred. The Monte-Carlo (MC) 
method computes multiple samples (or realisations) of the outcome space, which are averaged to 

obtain numerical estimates. A simple example of a MC algorithm to estimate  might consist of the 
following. Randomly select N co-ordinates (x,y) such that x and y are uniformly distributed in the 

interval [0, 1]. Then compute the fraction  of points with the property that 122  yx . Repeat the 

calculation a few times and average the results. As the number of points N increases, the fraction  
will approach /4. MC methods may be used to obtain approximate solutions of PB equations or 
used to explore processes for which it may not be possible (or at least exceedingly difficult) to 
formulate PB equations directly. 

PB methods may be further divided into two categories that depend on how a particle is viewed: 
either as an infinitely divisible entity that can exist in a continuous spectrum of sizes or as a discrete 
collection of individual sub-particles (or monomers) of specified sizes. PB methods have the 
disadvantage that there are usually assumptions made in the derivation of the basic equations 
regarding the probabilities of individual particles interacting, which MC methods need not employ. 
This contribution focuses on the discrete PB case. 

The first population balance formulation is usually accredited to Smoluchowski [1], who 
derived the equations that today bear his name for particle coagulation. One of the most recent 
reviews, featuring the derivations of various distinct types of PB equation, is given by Solsvik & 
Jakobsen [2]. Since its conception the PB method has been applied to a vast array of phenomena in 
science and engineering. The review by Ramkrishna & Singh [3] gives an indication of the variety of 
fields where PB models have been applied together with a selection of new applications. Indeed, in 
recent years, there have been several reviews of this subject and a selection are to be found in [4,5,6]. 
A useful review concentrating on one of the more popular applications in recent years is provided by 
Blum [7] who discusses agglomeration in atmospheric physics and also gives a discussion of the 
applications in astrophysics. Some of the first Monte-Carlo simulations involving cloud formation 
are those presented by Gillespie [8]. More recent contributions involving Monte-Carlo simulations 
include [9] and [10].  

The author’s motivation for studying the processes of agglomeration and cleavage stems from 
the wish to provide new mathematical models for polymer pyrolysis to improve prediction of the 
behaviour of these materials in fires. During the pyrolysis of a solid polymer the action of heat on the 
polymer molecule results in bond breakage (cleavage) and new bond formation as smaller, lighter, 
molecules are formed [11,12,13]. In some cases, additional reactions occur that result in bond 
formation, creating larger molecules. Although the reaction pathways involved in the pyrolysis of a 
given polymer may be complex [12,13], consisting of a number of steps, there are four main 
mechanisms involved: random scission, end-chain scission, chain stripping and recombination. 
Random scission occurs when a bond at a random location along the main polymer chain breaks, 
ultimately leading to the formation of two lighter molecules. End-chain scission occurs when bonds 
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break only at the end points of the polymer molecule leading to the formation of a monomer and a 
molecule with one fewer bonds than the original specimen. Chain-stripping occurs in branched 
polymer molecules and is a process whereby groups that are attached to the main polymer chain are 
removed, leaving the polymer backbone intact. Finally, recombination is the process of bond 
formation between two or more molecules creating larger species. The thermal decomposition of a 
solid polymer in a fire occurs mainly in the absence of oxygen—it is only when volatile species are 
formed that oxidation plays a major role. Hence, the processes listed above, occurring in the 
condensed phase prior to volatile species being formed, may be assumed to be anaerobic. At some 
point, species light enough to be volatile are formed. In a diffusion flame, which is the main type of 
flame in most fires of engineering interest, these species are advected away from the decomposing 
solid and then subsequently react with oxygen. The overall process of forming volatile species from 
a solid fuel is generally referred to in fire engineering as gasification. One of the primary goals of 
fire modelling is predicting the rate at which heat is released when a solid fuel is exposed to heat and 
this in turn depends on the production rate of volatile species together with their composition.  

Traditionally, kinetic rate equations are used to model the gasification rate of a solid fuel, but 
there are two significant problems associated with this approach. Firstly, there is no physical 
justification for the use of kinetic rate equations of this type for degradation reactions in the 
condensed phase. Also assumptions have to be made concerning the composition of the products—
these are not predicted. In an alternative approach, the author and others [14–27] have attempted to 
use PB methods to model pyrolysis of polymers. This approach provides a rigorous framework for 
the analysis of a particular degradation process and the products of degradation may also be 
predicted. It also has the potential to model the effect of other important reactions occurring during 
gasification, so that mechanisms of flame retardancy can, at least in principle, be modelled in detail. 
However, there are considerable computational overheads involved in its implementation and simple 
closed-form expressions for direct application in typical engineering situations are difficult to obtain. 
A review of the application of PB methods in polymer fire retardancy is given in [27]. The goal of 
this work is to investigate two fundamental processes occurring during pyrolysis (random cleavage 
and random recombination) with a view to developing more detailed models of the behaviour of 
polymers in fires in subsequent work. 

For practical purposes in what follows, a particle (or polymer) of a given size is considered as 
being composed of a finite collection of identically sized sub-particles (or monomers) connected by 
linkages, isomorphic to a linear chain. Consider an i-mer, a polymer comprised of i monomers with  
i – 1 links. During random cleavage, any of the i – 1 links is equally likely to break creating new 
molecules of smaller size. If link j breaks, then a j-mer and an (i − j)-mer are created. Recombination 
or agglomeration is viewed as the reverse of this process: an i-mer and j-mer combine to form an  
(i + j)-mer.  

Application of the PB method to the processes of random cleavage and agglomeration to 
discretely-sized particles involves employing statistical arguments to predict the evolution of an 
initially large population of linear polymer molecules. This results in a system of ordinary 
differential equations describing the time dependence of each i-mer concentration. Evolution of the 
moments of the distribution, as well as the individual molecular concentrations, is also of interest and 
expressions for these will be derived via the construction of moment generating functions. For the 
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purposes of this work, we shall assume that the total mass of the system remains constant, which is 
equivalent to stating that the first moment of the population is constant. 

2. Continuous Models of Scission and Agglomeration 

Although we shall be concentrating on discrete models, it is worth spending a brief moment 
reviewing the continuous case, as it provides helpful insight into solution methods for the discrete 
case. The processes of simple scission and agglomeration in a population with a continuous range of 
sizes have been considered by the author in an earlier paper in the context of an approximate model 
of polymer pyrolysis [25]. In that approach, it was assumed that a linear polymer molecule of length 

x may be cleaved at any point along its length creating two smaller molecules. Thus, if  is a 
continuous random variable uniformly distributed on the interval [0, 1], random cleavage of a 

molecule of size x will result in molecules of size  xxxx   1, 21 . For the simplest case of 

random scission, it was assumed that the rate of cleavage was directly proportional to the molecule 
size and so the rate of cleavage of specimens of size x was taken as xkc, where kc is a rate function 
that depends on temperature alone. Thus, if ),( txf  is the continuous probability density function for 

the population, defined such that the probability of encountering species of size in the range x to  
x + dx is dxtxf ),( , these assumptions lead directly to the continuous random scission equation  

.),(2 















x

c dtfxfk
t

f            (1) 

For the case of recombination it was assumed that there is a size-independent rate ka, at which 

species combine to produce new larger species. Thus if a specimen of size 1x  encounters another of 

size 2x , then it was assumed that these will combine to produce a specimen of size 21 xx  . It 

transpired that the evolution of f for pure agglomeration was determined by the equation  

 fff
k

t

f a 



*
2

        (2) 

where, the continuous convolution operator * is defined as  
x

dtxgtftxgf
0

),(),(),()(  .  

If random scission and recombination occur together with the same assumptions for each 

process as described above, then the evolution of the probability density function f will be 
determined by the equation 

 .*
2

),(2 fff
k

dtfxfk
t

f a

x

c 















              (3) 
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It was discovered that the solutions to both problems of continuous scission and recombination 

could be found by Laplace transform and this fact lends inspiration to our approach to the solution of 
the discrete problem below.  

3. Discrete Agglomeration 

Consider a population of discretely-sized particles. We assume that particles can have distinct 

sizes, which we label 1, 2, 3, …. Furthermore, we assume that each particle is equally likely to react 

with any other. Adopting the notation in the appendix, we use the sequence    ,..., 211
nntn

jj  


n  to 

define the population, where  tn j  is the ratio of number of particles in the population of size j to the 

initial number of particles in the population. Thus, if )(tN  is the number of particles in the 

population at time t, it follows that the ratio )0(/)( NtN  corresponds to the zeroth moment of the 

population,   





1

0
i

int . Furthermore, the product  tjn j will be proportional to the mass of particles 

of size j and consequently the sum  tjn
j

j


1

, corresponding to the first moment  t1 , will be 

proportional to the total mass of the population and so will be constant. 

Now consider the process of agglomeration where two particles of size i and j join to create a 
new particle of size i + j. We assume that the total recombination rate is directly proportional to the 

number of particles, so the rate at which particles combine is aNk , where ak  is a rate function that 

depends on temperature alone. Hence in time step t, tNka  particles combine to form larger 

species. Thus, tNka  particles will be removed from the population and 2/tNka  new particles will 

be created (since two particles combine to form a new particle). It then follows that the number of 

particles in the distribution will evolve according to 2// aNkdtdN   and accordingly the zeroth 

moment will be given by   2/
0

tkaet  . If we assume that the particle sizes are randomly distributed, 

and that each particle is equally likely to react, then the probability of selecting a particle of size j 

from the population is 0/ jn . In order to generate a new particle of size i > 1, it is necessary for 

particles of size j and i − j, j = 1, .., i − 1, to combine. Thus the probability of generating a new 
particle of size i in the population by random agglomeration of particles of size j and i − j will be 

given by the ith. component of   2
0/* nn , where * is now used to denote the discrete convolution 

operator (see appendix). Hence it follows that the discrete equations defining the evolution of the 
population by agglomeration alone can be written as 
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 nnn
n

*
2

1

0


d

d
                                (4) 

where  is defined implicitly by the equation akdtd / .  

Now, setting  2/exp1 z  (which is equivalent to the fraction of particles that have 

undergone recombination, or conversion) and pn  e , the discrete agglomeration equations (4) 

may be recast in simpler form 

pp
p

*
dz

d
                                         (5) 

Taking the discrete Laplace transform (see appendix) of the equation above, using the results 
and notation of the appendix and remembering that the discrete Laplace transform (DLT) of p will 

now be a function of both s and z gives 2~/~ pzp  . This last equation may be readily solved to give 

)(~1

)(~
),(~

0

0

spz

sp
zsp


                                  (6) 

Here, 0
~p  is the DLT of )0(p , which is identical to the DLT of )0(n  and is therefore a function of s 

only. Now, since 1z  when 0 , it follows that we can write the solution for 0  as 







1

1
0

~~
j

jj zpp  and so it follows that we can write the inverse transform (corresponding to the 

solution for p in terms of z) as 

  





1

1*
0

j

jj zz pp                             (7) 

Here, *
0
jp  denotes j − 1 applications of the convolution operator * to the vector 0p , so that 0

*1
0 pp  , 

00
*2

0 *ppp  , 000
*3

0 ** pppp  , etc. 

Now to pick a simple example, suppose that the initial distribution consists only of particles of 

size 1, so that  



1,10 jjp , where ji,  is Kronecker’s delta. Then it is a simple matter to verify that 

 



1,

*
0 jji
i p  and so Eq. (7) implies that   1

1
j

jzp  and hence 

  12/1
 

i

i een                             (8) 
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It follows that the maximum value of in  when i > 1 is achieved at  )1/(2ln2max  i  and is given 

by       11 1/14max   ii
i iin . Figure 2 shows the time taken to achieve the maximum particle 

concentration (dark curve), the maximum particle concentration (dashed lighter curve) and 

concentration distributions at  = 2, 4, 6 (solid lighter curves). 
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Figure 2. Time to reach maximum frequency max  and maximum relative frequency 

 inmax  together with frequency distributions at different  values for initially mono-

disperse population. 

This solution may be extended readily to the general mono-disperse case where  



1,0 jjkp . In 

this case, only species that are multiples of k will evolve and the solution is 

   








 



.otherwise,1/

,,
1/2/ kii

eekiI

kie
n





                    (9) 

Here the function )(xI , where x is a real number, returns 1 if x is an integer and 0 otherwise. 

Returning to the general solution (7), it transpires that re-writing this expression component-by-

component yields a more useful incarnation of the solution for any initial distribution of relative 

particle frequencies 0n , which may be written as 
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 

   



















i

j

j

i
ji iee

ie

n

1

12/*
0

10

,1,1

1,





n

n

                                        (10) 

where  i0n  denotes the ith. component of 0n . 

Returning to the expression for p~  in Eqn. (6), it follows that the DLT of the particle population 

is 

 
0

0
2

~1

~1~
nz

nz
n




                                                            (11) 

As described in the appendix, it is possible to find the distribution moments from Eqn. (11) 

above. Proceeding as described in the appendix, on setting 0s  and noting that 1)0(~
0 n , the zeroth 

moment z10  is recovered as expected. Differentiating Eqn. (11) with respect to s gives  

 
 

2

0
3

0

2

2
0

22

0
2

2
0

2

0

~

~1

12~

~1

1~
,

~

~1

1~









































ds

nd

nz

zz

ds

nd

nz

z

s

n

ds

nd

nz

z

s

n
                     (12) 

Setting 0s , it follows from the first of these expressions that 000 |/~|/~
  ss dsndsn , which 

confirms that the first moment 1  is constant as expected from the fact that total particle mass must 

be conserved. The second expression yields the second moment 

    2
122 1

2
0 

z

z
z


                                                      (13) 

from which it follows that the coefficient of variation (see appendix for definition) is given by 

  2/
2

22

1
)0(1

)0(  



e
c

cc
                                                      (14) 

Hence, we have the interesting result that no matter what the initial distribution, the coefficient of 
variation approaches 1 as  . 

4. Discrete Cleavage 

As particles combine forming larger particles, there is also the possibility of that large particles 
may break apart to form smaller particles. The discrete cleavage problem has already been partly 
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considered by the author and others in the context of random depolymerisation [14–27]; however, we 
revisit it here giving complete exact solutions for moments and general initial distributions.  

Let us consider a large linear particle (with no branches for simplicity) of size j as comprising of 
j smaller particles with j − 1 discrete linkages or bonds, each link being equally likely to break. Let 

jn  denote the ratio of the number of particles of size j to the initial number of particles as in the 

previous section. Since the total number of j-mers in the population is jnN )0( , there will be 

  jnNj )0(1  bonds, each of which is equally likely to break. Thus in time step t , we assume that 

tkNnjn cjj  )0()1(  bonds will break for each group of particles of size j, where ck  is a rate 

function that depends only on temperature. If the time step is very small then it may be assumed that 

1 link per particle breaks and so this will remove jn  particles of size j from the population and 

create jn2  smaller particles. If each link is equally likely to break then the jn2  new particles 

created by cleavage will be uniformly distributed with sizes ranging from 1 to j − 1. Thus the 
equations for discrete cleavage are 

  





1

21
ij

ji
i nni

d

dn


, ...,2,1i                                        (15) 

Here,   is defined implicitly by the equation ckdtd / . The problem of general bond-weigthed 

scission has been discussed by the author in an earlier contribution [26]. In that case the probability 

of bond j breaking within a i-mer is denoted by )(i
jw , with 1

1

1

)( 




i

j

i
jw , and the summation term of Eqn. 

(15) is replaced by  


 
n

ij
j

j
i

j
ij nwwj

1

)()()1( . When each bond is equally likely to break we have 

   1/1  jw j
i  and Eqn. (15) is recovered.  

Summing these equations and using the result that   













1 11

1
i j

j
ij

j njn , gives the equation 

for the zeroth moment as 010 /  dd . Multiplying by i and summing, noting the fact that 

  













1 11

12
i j

j
ij

j njjni , gives 0/1  dd  as expected. Hence, we see readily that the first 
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moment is constant and solving the equation for the zeroth moment gives     e110 1 . Note 

that if 11   the zeroth moment is constant for all , which implies that there is no change in the 

number of particles as  increases. Since cleavage can only increase population size, the only 
possible way that this can come about is that the initial particle distribution corresponds to a steady 
state of the system. It is obvious that the only steady state corresponds to a mono-disperse population 

 
1,1 ii , which of course, given the general observations in the appendix, is the only initial 

distribution with first moment 11  .  

It transpires that taking the DLT in this case does not prove helpful in constructing the solution. 
However, since the random cleavage problem is linear, the general solution can be constructed by 

superposition of solutions with initially mono-disperse distributions  
1, iij . Without going into 

detail for brevity, it transpires that, if iin )0( , the general solution to the discrete cleavage 

equations may be written as 

 
 
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

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
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jii
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ijb
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ecbeaen

.1

,2

,1

,









                                                   (16) 

In order to compute solutions, the expressions (16) above are not convenient because each 

coefficient involves evaluating an infinite sum. This issue can be circumvented by defining   11 i1  

and   1iiI . Then it may be shown that the coefficients become 

   
 

    












.*1

,*2

,*1

010

01

01

nI1I1nc

nII1b

nI1I1a





                                               (17) 

Now, if Eqns. (16) are multiplied by ise  and summed, it follows that the DLT of the solution is  

)(~)(
~

)(~),(~     scesbsaesn                                         (18) 
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Noting that the DLT of 1 is  ss eesE   1/)(  and the DLT of I is  21/ ss eeE   , the 

DLTs of a, b and c are found readily from Eqns. (17) as 
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It follows from the appendix that the second moment is given by 
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~

)(~)(2   cebae    and using the expressions in Eqns. (19) above we have that when 

0 , 
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Note that this formula cannot be used to compute the second moment when  = 0: this must be 
done directly from the initial distribution. To take the simple example of an initially mono-disperse 

distribution, where jmj ,  , we have  
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Thus, for ni 1 , it may be shown that in  will achieve a maximum of 
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i . The graph in Figure 3 illustrates these results for m = 100. The 

dashed curve corresponds to the maximum particle concentration  inmax  and the solid curves are 

particle distributions for mi 1  at different  values. 
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Figure 3. Particle distributions (solid curves) and maximum concentration (dashed curve) 
for initially mono-disperse example (n = 100). 
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The graph in Figure 4 plots the coefficient of variation as a function of  for m = 100. For a 
distribution that is initially mono-disperse, it follows that the coefficient of variation should be 

initially zero. As time progresses, random scission produces species of smaller size and so the 

variation of size will increase in the distribution, implying that 2c  will increase. However, since 
monomers are the smallest species that can exist in this model, as time progresses further the 
spectrum of sizes will approach a final mono-disperse distribution located on 1m , implying that 

2c  must approach 0 as  . Hence, we would expect a peak in the graph of  2c , as confirmed 

in Figure 4. 
The composition of smaller species is of particular interest in the case of polymer combustion. 

Consider the initially mono-disperse case jmj ,   when 1m . It may be shown from Eqns. (16), 

(21), (22), (23) above that, when m is large,    21 1/    eemn i
i  for mi  . This result may be 

extended for particles of arbitrary initial distribution but with large first moment 1 . If this is the 



627 

AIMS Materials Science  Volume 4, Issue 3, 614-637. 

case, then it follows that the numbers of smaller particles will be    21
1 1/    een i

i . This is 

interesting because it shows that when the initial average particle mass is high, the distribution of 
evolved lighter species does not depend on the initial distribution. This observation has an important 
consequence for polymer flammability. If a given polymer Pm of molecular mass m degrades by 
random cleavage, then the evolved species will not depend on m, provided that it is large. This in 
turn implies that the effective heat of combustion of Pm (an important engineering quantity in 
flammability related to the rate of heat released per unit mass consumed) will not depend on initial 
molecular mass. 

0 2 4

0.0

0.5

1.0

c2

  

Figure 4. Coefficient of variation for an initially mono-disperse distribution (m = 100). 

5. Combined Agglomeration and Cleavage 

Naturally, it is reasonable to expect that both agglomeration and cleavage may occur at different 

rates as time progresses. If ca kk /  is the ratio of agglomeration rate function to cleavage rate 

function (both of which are assumed to depend on temperature alone), then it follows directly from 
the preceding two sections above that the PB equations for particle concentrations may be written as 
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ij

iji
i nni

d

dn
nn *
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
,                                      (25) 

where,  is defined implicitly by the ordinary differential equation ckdtd /  and 0  is the zeroth 

moment.  
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Here we consider only cases where  is constant. In general, especially in the case of polymer 
degradation, the agglomeration and cleavage rates will depend on temperature and so the assumption 

that  = constant is consistent only with isothermal conditions. This restriction is not a problem if we 
seek to compare solutions of Eqn. (25) with experimental data obtained under constant temperature 
conditions, or where degradation occurs under quasi-steady conditions. However, if temperature is 

not constant, as would be the case for combustion of a polymer in a real fire, then  would, in general, 
be a function of temperature. In order to close the model in this case, an appropriate expression for 
energy conservation must be formulated to give an equation describing the evolution of temperature 

together with expressions defining the temperature dependence of the rate functions ak  and ck . 

Now, since cleavage increases population size and agglomeration reduces it, we have the 
possibility of solutions to the combined agglomeration-cleavage problem evolving on to steady states 
and these will be discussed in detail below.  

Again from the preceding two sections, it follows that the first moment 1  is constant and also 

that the equation for the zeroth moment is   010 2/1/  dd . Employing the initial 

condition 1)0(0  , the solution is 
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Now, if one were to attempt a numerical solution of the combined agglomeration and cleavage 

equations, the term 


ij
jn2 would obviously prove troublesome. However, given the fact that we now 

know 0 , we are free to write 
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j nnnn  , which simplifies matters. Hence we 

may equally seek solutions of  
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Now, as for the case of discrete cleavage, we have the situation that if 2/11   , then the 

population size is invariant for all . However, this is different from pure cleavage as it is not 

necessarily the case that an initial population with 2/11    is a steady state for 0 . For 

example, consider the case 2  and the initial population ii ,2  . It is clear that this initial 
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population has 2/11    = 2 and also that it is not a steady state since particles of size 2 will 

agglomerate forming larger species and also cleave forming species of size 1. Furthermore, from the 

observations of the appendix, since 1  is always greater than or equal to 1, if 2/11 1   , then 

10 /   will monotonically reduce to  2/1/1   as   and if 2/11   , then 10 /   will 

monotonically increase to  2/1/1   as  . It also follows from these observations that for 

finite 0 , 10 /   will remain in the interval (0, 1] for all 0 . 

Given the analysis of earlier sections above, it seems sensible to attempt to seek a solution of 

the form     1 i
i fn , where f and   are functions of  alone to be found and   1  . For this 

to be valid we must have that both 0
1
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



i

if  and 1
1

1 
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

i

iif . It is a straightforward matter to 

verify that these conditions imply that   01/ f  and   1
21/ f , thereby fixing the forms 

of f and   as 1
2
0 / f  and 10 /1  . We have seen above that 1/0 10    for all 0 , 

which implies that   will remain in the interval [0, 1). Direct substitution of this candidate reveals 
that Eqns. (27) are satisfied and thus we see that solutions to the combined problem of the form 
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are valid, where 0  is given by (26) and 1  can take any value greater than or equal to 1. It is clear 

that as   these solutions evolve onto the steady states: 
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It is straightforward to calculate the second moment for this particular solution and it transpires 

that as   the coefficient of variation will approach   2/ . 

It is worth noting that if we take 11  , by the observations in the appendix, we recover the 

initially mono-disperse solution  
1, iii . The solution is illustrated in Figure 5, where particle 
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concentrations are plotted at different  values for  = 5.0. Contours of the coefficient of variation are 
plotted against  and  in Figure 6. 
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Figure 5. Illustration of exact solution for mono-disperse case,  = 5.0. 
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Figure 6. Coefficient of variation for mono-disperse case. 

In general, as  , solutions will approach steady-states given by the solutions of  
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Now, given the lower triangular form of these equations, it is possible to construct their 
solutions explicitly starting from the equation for i = 1. It further follows from this that there is a 
unique steady state. Since we have already found a steady state given by Eqn. (29) above, it must 
follow that this corresponds to the steady state of the general problem. It is interesting that up to a 
multiplicative constant, all solutions evolve onto the same steady state irrespective of the initial 
population.  
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Figure 7. Steady-state particle concentrations for combined agglomeration and cleavage. 

Figure 7 illustrates steady-state particle concentrations, 1/in  taken from Eqn. (29), for various 

values of . The envelope i  of the steady-state solutions (shown by the dashed curve in Figure 7) 

may be readily calculated and is given by     11 1/14   ii
i ii . Interestingly, this is identical to the 

maximum particle concentrations for discrete cleavage of an initially mono-disperse population 
given in the immediately preceding section above. Closer inspection of the mono-disperse example 
above reveals that this is to be expected since the curve giving the maximum particle concentration 

also corresponds to the envelope of solutions for this case and setting  12 2/   e  in the steady 

state solution Eqn. (29) above recovers the maximum particle concentrations for the initially mono-
disperse discrete cleavage case. 

Now, to investigate stability of the steady state solution, set 
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We wish to investigate the behaviour of a small perturbation   1i
ii evu  to the steady state 

as  . After substitution into Eqn. (27) and linearising, we find that for large , iv  may be 

expressed as a linear combination of powers of e  up to a maximum power of  1ie . Hence, up to a 

multiplicative constant, it follows that   2~ eui  as   and so the steady state is linearly stable 

to small perturbations. 
Figure 8 illustrates the results of numerical solutions of the combined agglomeration-cleavage 

problem for  = 0.5, 2.0, 5.0, 10.0. The solutions all start from a mono-disperse particle distribution 
located at i = 10. Note that particle concentrations peak at multiples of 10 due to agglomeration, but 

the peaks smooth out as  increases and the steady state is approached. As  increases, the rate at 
which agglomeration occurs (compared with cleavage) increases and so we should expect to see 
more peaks at integer multiples of the initial molecule size being generated. As has been seen in 
Section 4, the effect of scission on an initially mono-disperse distribution is to reduce the peak in the 
size distribution located at the initial molecule size and generate an exponential distribution at 
smaller sizes. Hence as time progresses, the distribution peaks generated by agglomeration, located 
at increasingly large integer multiples of the initial molecule size, are re-distributed towards smaller 
molecule sizes. Thus we would expect that the tendency, as time becomes very large, is for the size 
distribution to evolve onto a smooth exponential distribution, 
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Figure 8. Numerical solutions for various  values. 
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6. Conclusion 

The problems of discrete random agglomeration and cleavage (together with the combined 
cleavage-agglomeration problem) have been investigated analytically. Whilst the main application 
from the author’s view is polymer combustion, the results also have relevance in other fields. 
However, the main thrust of this work is aimed at producing solutions for random scission and 
agglomeration that may be incorporated into more comprehensive flammability models of polymer 
combustion. 

Exact solutions for both problems were constructed and it was found that the discrete Laplace 
transform (DLT) was particularly useful for either obtaining solutions or distribution moments. The 
author failed to find an exact solution for the transient combined problem (cleavage with 
agglomeration), but it was demonstrated that a stable steady-state exists and a closed-form 
expression for this was found. 

Two interesting results were observed for the discrete agglomeration and cleavage problems: 
1. For large time, the coefficient of variation for discrete agglomeration ~1 and does not depend on 

the initial particle distribution. 
2. For discrete cleavage, if the initial population is such that its first moment μ1 is very large, then 

the evolving distribution of small particles (with masses much less than μ1) does not depend on 
the initial distribution. 

In future work, the solutions developed above will be implemented in a new complete pyrolysis 
model for an important class of polymers whose thermal degradation mechanism is dominated by 
random cleavage. 

Direct comparison of PB predictions with experimentally determined molecular mass 
distributions of polymers during pyrolysis is exceedingly difficult, offering significant technical 
challenge, and most comparisons to date have been with derived quantities such as the rate of mass 
loss. However, it is hoped to provide direct comparison between PB predictions and molecular mass 
distributions in a future contribution. 
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Appendix: Notation and Fundamental Concepts 

Let  



1jjaa ,  




1jjbb  denote infinite sequences such that the sum of all their terms is finite. 

The discrete convolution operator * is defined such that ba *  is itself a sequence with ith. term 

given by 
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Furthermore, let 
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
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jaa . It is well known 0 that * is both associative and commutative and 

also that  

|||||*| baba                                                              (A2) 

It immediately follows from this result that if || a  and || b  are finite then so is |*| ba . 
The discrete Laplace transform (DLT) of a sequence a  with || a  finite, denoted by either )(aL  

or a~  is defined by 
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The DLT is analogous to the Z-transform [28] and if we put j
js

j aeA  , j
js

j beB  , then it 

immediately follows from Eq. (A2) that the DLT has the property 

)()()*( baba LLL                                                         (A4) 

Statisticians will recognise the similarity between the DLT and the moment generating function 

of a discrete probability distribution [29]. The mth. moment of a sequence a, denoted by m , is 

defined as 







1j

j
m

m aj                                                            (A5) 

and is given in terms of the DLT by 

 
0

~
1




s

m

m
m

m ds

ad                                                      (A6) 

Note that || a  defined above is the same as the zeroth moment 0 . When dealing with discrete 

population dynamics, only species of a certain size (which may be labelled by an integer that is 
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proportional to the particle size) exist and we shall consider sequences  



1jjnn , with finite || n , 

where jn  is defined as the ratio of the number of particles of size j to the initial number of particles 

in the population. As time increases, the population evolves and so n will be, in general, a function of 
time. The population moments will also be functions of time with the exception of the first moment, 
since this is proportional to the total mass of particles, which is taken as constant. 

Furthermore, if the initial particle distribution is  



10 jjn , where 1|| 0 n  and each 0i , 

then since 









11 i

i
i

ii  , it follows that the first moment of the particle distribution will always be 

greater than, or equal to, 1. It is also apparent that the only initial population with first moment of 1 is 

the mono-disperse population 1,ii   , where ji,  is Kronecker’s delta. This last statement follows 

from the observation that if both 1
1




i
i  and 1

1




i
ii  for 0i , then subtracting these 

expressions implies that   01
1




i
ii  , which is impossible unless 0i  for 2i . 

In many circumstances, we shall be interested in the second moment of the population, since it 

is central to definitions of dispersion such as the variance. For example, the population variance 2  
and coefficient of variation 2c  respectively are defined by  

2
0

2
1

0

22





  , 1

2
1

202 



c .                                               (A7) 

Note that if the population is mono-disperse, then 02 c ; otherwise 2c  will be positive. It is 

also worthy of note that there is no guarantee that 2  will always be well defined. To see this, 

consider the sequence   1
3/1 jja . Now clearly || a  is finite and the first moment is 



1

2/1
j

j  = 

6/2 . However the second moment is given by the harmonic series, which is divergent.  
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