12,577 research outputs found

    Implementing the three-particle quantization condition including higher partial waves

    Full text link
    We present an implementation of the relativistic three-particle quantization condition including both ss- and dd-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, Kdf,3\mathcal{K}_{\mathrm{df,3}}, which is a generalization of the effective range expansion of the two-particle K matrix, K2\mathcal{K}_2. Relativistic invariance plays an important role in this expansion. We find that dd-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle dd-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle dd-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3Ï€+3\pi^+ system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of Kdf,3\mathcal{K}_{\mathrm{df,3}}. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.Comment: 57 pages, 12 figures, 3 tables (v2: Made minor clarifications, updated a reference, fixed typos

    Stanford telemetry monitoring experiment on Lunar Explorer 35 Final report

    Get PDF
    Explorer 35 data analysis including occultation study and antenna pattern interpretation along with electromagnetic property experiment

    Passive dynamical decoupling of trapped ion qubits and qudits

    Full text link
    We propose a method to dynamically decouple every magnetically sensitive hyperfine sublevel of a trapped ion from magnetic field noise, simultaneously, using integrated circuits to adiabatically rotate its local quantization field. These integrated circuits allow passive adjustment of the effective polarization of any external (control or noise) field. By rotating the ion's quantization direction relative to this field's polarization, we can perform `passive' dynamical decoupling (PDD), inverting the linear Zeeman sensitivity of every hyperfine sublevel. This dynamically decouples the entire ion, rather than just a qubit subspace. Fundamentally, PDD drives the transition mF→−mFm_{F}\rightarrow -m_{F} for every magnetic quantum number mFm_{F} in the system--with only one operation--indicating it applies to qudits with constant overhead in the dimensionality of the qudit. We show how to perform pulsed and continuous PDD, weighing each technique's insensitivity to external magnetic fields versus their sensitivity to diabaticity and control errors. Finally, we show that we can tune the sinusoidal oscillation of the quantization axis to a motional mode of the crystal in order to perform a laser-free two qubit gate that is insensitive to magnetic field noise

    Progress report on the relativistic three-particle quantization condition

    Get PDF
    We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Brice\~no, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.Comment: 7 pages, 1 figure, Proceedings of Lattice 201

    Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e

    Get PDF
    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress)
    • …
    corecore