4,213 research outputs found

    Bodyspace at the pub: sexual orientations and organizational space

    Get PDF
    In this article we argue that sexuality is not only an undercurrent of service environments, but is integral to the way that these workspaces are experienced and negotiated. Through drawing on Sara Ahmed’s (2006a) ‘orientation’ thesis, we develop a concept of ‘bodyspace’ to suggest that individuals understand, shape and make meaning of work spaces through complex sexually-orientated negotiations. Presenting analysis from a study of UK pubs, we explore bodyspace in the lived experience of workplace sexuality through three elements of orientation: background; bodily dwelling; and lines of directionality. Our findings show how organizational spaces afford or mitigate possibilities for particular bodies, which simultaneously shape expectations and experiences of sexuality at work. Bodyspace therefore provides one way of exposing the connection between sexual ‘orientation’ and the lived experience of service sector work

    Comparison of optical model results from a microscopic Schr\"odinger approach to nucleon-nucleus elastic scattering with those from a global Dirac phenomenology

    Full text link
    Comparisons are made between results of calculations for intermediate energy nucleon-nucleus scattering for 12C, 16O, 40Ca, 90Zr, and 208Pb, using optical potentials obtained from global Dirac phenomenology and from a microscopic Schr\"odinger model. Differential cross sections and spin observables for scattering from the set of five nuclei at 65 MeV and 200 MeV have been studied to assess the relative merits of each approach. Total reaction cross sections from proton-nucleus and total cross sections from neutron-nucleus scattering have been evaluated and compared with data for those five targets in the energy range 20 MeV to 800 MeV. The methods of analyses give results that compare well with experimental data in those energy regimes for which the procedures are suited.Comment: 22 pages, 12 figure

    Absolute parameters for AI Phoenicis using WASP photometry

    Get PDF
    Context. AI Phe is a double-lined, detached eclipsing binary, in which a K-type sub-giant star totally eclipses its main-sequence companion every 24.6 days. This configuration makes AI Phe ideal for testing stellar evolutionary models. Difficulties in obtaining a complete lightcurve mean the precision of existing radii measurements could be improved. Aims. Our aim is to improve the precision of the radius measurements for the stars in AI Phe using high-precision photometry from the Wide Angle Search for Planets (WASP), and use these improved radius measurements together with estimates of the masses, temperatures and composition of the stars to place constraints on the mixing length, helium abundance and age of the system. Methods. A best-fit EBOP model is used to obtain lightcurve parameters, with their standard errors calculated using a prayer-bead algorithm. These were combined with previously published spectroscopic orbit results, to obtain masses and radii. A Bayesian method is used to estimate the age of the system for model grids with different mixing lengths and helium abundances. Results. The radii are found to be R1 = 1.835 ± 0.014 RO, R2 = 2.912 ± 0.014 RO and the masses M1 = 1.1973 ± 0.0037 Mo, M2 = 1.2473 ± 0.0039 MO. From the best-fit stellar models we infer a mixing length of 1.78, a helium abundance of YAI = 0.26+0.02−0.01 and an age of 4.39 ± 0.32 Gyr. Times of primary minimum show the period of AI Phe is not constant. Currently, there are insufficient data to determine the cause of this variation. Conclusions. Improved precision in the masses and radii have improved the age estimate, and allowed the mixing length and helium abundance to be constrained. The eccentricity is now the largest source of uncertainty in calculating the masses. Further work is needed to characterise the orbit of AI Phe. Obtaining more binaries with parameters measured to a similar level of precision would allow us to test for relationships between helium abundance and mixing length

    Basins of attraction on random topography

    Full text link
    We investigate the consequences of fluid flowing on a continuous surface upon the geometric and statistical distribution of the flow. We find that the ability of a surface to collect water by its mere geometrical shape is proportional to the curvature of the contour line divided by the local slope. Consequently, rivers tend to lie in locations of high curvature and flat slopes. Gaussian surfaces are introduced as a model of random topography. For Gaussian surfaces the relation between convergence and slope is obtained analytically. The convergence of flow lines correlates positively with drainage area, so that lower slopes are associated with larger basins. As a consequence, we explain the observed relation between the local slope of a landscape and the area of the drainage basin geometrically. To some extent, the slope-area relation comes about not because of fluvial erosion of the landscape, but because of the way rivers choose their path. Our results are supported by numerically generated surfaces as well as by real landscapes

    Impact of D0-D0bar mixing on the experimental determination of gamma

    Full text link
    Several methods have been devised to measure the weak phase gamma using decays of the type B+- --> D K+-, where it is assumed that there is no mixing in the D0-D0bar system. However, when using these methods to uncover new physics, one must entertain the real possibility that the measurements are affected by new physics effects in the D0-D0bar system. We show that even values of x_D and/or y_D around 10^{-2} can have a significant impact in the measurement of sin^2{gamma}. We discuss the errors incurred in neglecting this effect, how the effect can be checked, and how to include it in the analysis.Comment: 18 pages, Latex with epsfig, 8 figure

    Reading is disrupted by intelligible background speech: evidence from eye-tracking

    Get PDF
    It is not well understood whether background speech affects the initial processing of words during reading or only the later processes of sentence integration. Additionally, it is not clear how eye-movements support text comprehension in the face of distraction by background speech and noise. In the present research, participants read single sentences (Experiment 1) and short paragraphs (Experiments 2-3) in four sound conditions: silence, speech-spectrum Gaussian noise, English speech (intelligible to participants), and Mandarin speech (unintelligible to participants). Intelligible speech did not affect the lexical access of words and had a limited effect on the first-pass fixations of words. However, it led to more regressions and more re-reading fixations compared to both unintelligible speech and silence. The results suggested that the distraction is mostly semantic in nature, and there was only limited evidence for a contribution of phonology. Finally, intelligible speech disrupted comprehension only when participants were prevented from re-reading previous words. These findings suggest that the semantic properties of irrelevant speech can disrupt the ongoing reading process, but that this disruption occurs in the post-lexical stages of reading when participants need to integrate words to form the sentence context and to construct a coherent discourse of the text

    Is 8:30 a.m. Still Too Early to Start School? A 10:00 a.m. School Start Time Improves Health and Performance of Students Aged 13-16.

    Get PDF
    While many studies have shown the benefits of later school starts, including better student attendance, higher test scores, and improved sleep duration, few have used starting times later than 9:00 a.m. Here we report on the implementation and impact of a 10 a.m. school start time for 13 to 16-year-old students. A 4-year observational study using a before-after-before (A-B-A) design was carried out in an English state-funded high school. School start times were changed from 8:50 a.m. in study year 0, to 10 a.m. in years 1-2, and then back to 8:50 a.m. in year 3. Measures of student health (absence due to illness) and academic performance (national examination results) were used for all students. Implementing a 10 a.m. start saw a decrease in student illness after 2 years of over 50% (p < 0.0005 and effect size: Cohen's d = 1.07), and reverting to an 8:50 a.m. start reversed this improvement, leading to an increase of 30% in student illness (p < 0.0005 and Cohen's d = 0.47). The 10:00 a.m. start was associated with a 12% increase in the value-added number of students making good academic progress (in standard national examinations) that was significant (<0.0005) and equivalent to 20% of the national benchmark. These results show that changing to a 10:00 a.m. high school start time can greatly reduce illness and improve academic performance. Implementing school start times later than 8:30 a.m., which may address the circadian delay in adolescents' sleep rhythms more effectively for evening chronotypes, appears to have few costs and substantial benefits
    corecore