257 research outputs found

    Single photon absorption and dynamic control of a coupled quantum dot-cavity system

    Get PDF
    We theoretically investigate the dynamic interaction of a quantum dot in a nanocavity with timesymmetric single photon pulses. The simulations, based on a wavefunction approach, reveal that almost perfect single photon absorption occurs for quantum dot-cavity systems operating on the edge between strong and weak coupling regime. The computed maximum absorptions probability is close to unity for pulses with a typical length comparable to the half of the Rabi period. Furthermore, the dynamic control of the quantum dot energy via electric fields allows the freezing of the light-matter interaction leaving the quantum dot in its excited state. Shaping of single photon wavepackets by the electric field control is limited by the occurrence of chirping of the single photon pulse. This understanding of the interaction of single photon pulses with the quantum dot-cavity system provides the basis for the development of advanced protocols for quantum information processing in the solid state.Comment: 7 pages, 4 figure

    Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity

    Full text link
    We show theoretically that entangled photon pairs can be produced on demand through the biexciton decay of a quantum dot strongly coupled to the modes of a photonic crystal. The strong coupling allows to tune the energy of the mixed exciton-photon (polariton) eigenmodes, and to overcome the natural splitting existing between the exciton states coupled with different linear polarizations of light. Polariton states are moreover well protected against dephasing due to their lifetime ten to hundred times shorter than that of a bare exciton. Our analysis shows that the scheme proposed can be achievable with the present technology

    Narrowband Biphotons: Generation, Manipulation, and Applications

    Full text link
    In this chapter, we review recent advances in generating narrowband biphotons with long coherence time using spontaneous parametric interaction in monolithic cavity with cluster effect as well as in cold atoms with electromagnetically induced transparency. Engineering and manipulating the temporal waveforms of these long biphotons provide efficient means for controlling light-matter quantum interaction at the single-photon level. We also review recent experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG)

    Get PDF
    In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.Fil: Matthijnssens, Jelle. Katholikie Universiteit Leuven; BélgicaFil: Ciarlet, Max. Novartis Vaccines & Diagnostics; Estados UnidosFil: McDonald, Sarah M.. National Institute Of Allegry & Infectious Diseases (niaid) ; National Institutes Of Health;Fil: Attoui, Houssam. Animal Health Trust.; Reino UnidoFil: Bányai, Krisztián. Hungarian Academy of Sciences; HungríaFil: Brister, J. Rodney. National Library Of Medicine; Estados UnidosFil: Buesa, Javier. Universidad de Valencia; EspañaFil: Esona, Mathew D.. Centers for Disease Control and Prevention; Estados UnidosFil: Estes, Mary K.. Baylor College of Medicine; Estados UnidosFil: Gentsch, Jon R.. Centers for Disease Control and Prevention; Estados UnidosFil: Iturriza Gómara, Miren. Health Protection Agency; Reino UnidoFil: Johne, Reimar. Federal Institute for Risk Assessment; AlemaniaFil: Kirkwood, Carl D.. Royal Children's Hospital; AustraliaFil: Martella, Vito. Università degli Studi di Bari; ItaliaFil: Mertens, Peter P. C.. Animal Health Trust.; Reino UnidoFil: Nakagomi, Osamu. Nagasaki University; JapónFil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; ArgentinaFil: Rahman, Mustafizur. International Centre For Diarrhoeal Disease Research; BangladeshFil: Ruggeri, Franco M.. Istituto Superiore Di Sanita; ItaliaFil: Saif, Linda J.. Ohio State University; Estados UnidosFil: Santos, Norma. Universidade Federal do Rio de Janeiro; BrasilFil: Steyer, Andrej. University of Ljubljan; EsloveniaFil: Taniguchi, Koki. Fujita Health University School of Medicine; JapónFil: Patton, John T.. National Institute Of Allegry & Infectious Diseases (niaid) ; National Institutes Of Health;Fil: Desselberger, Ulrich. University of Cambridge; Estados UnidosFil: van Ranst, Marc. Katholikie Universiteit Leuven; Bélgic

    Discovery of a New Human Polyomavirus Associated with Trichodysplasia Spinulosa in an Immunocompromized Patient

    Get PDF
    The Polyomaviridae constitute a family of small DNA viruses infecting a variety of hosts. In humans, polyomaviruses can cause infections of the central nervous system, urinary tract, skin, and possibly the respiratory tract. Here we report the identification of a new human polyomavirus in plucked facial spines of a heart transplant patient with trichodysplasia spinulosa, a rare skin disease exclusively seen in immunocompromized patients. The trichodysplasia spinulosa-associated polyomavirus (TSV) genome was amplified through rolling-circle amplification and consists of a 5232-nucleotide circular DNA organized similarly to known polyomaviruses. Two putative “early” (small and large T antigen) and three putative “late” (VP1, VP2, VP3) genes were identified. The TSV large T antigen contains several domains (e.g. J-domain) and motifs (e.g. HPDKGG, pRb family-binding, zinc finger) described for other polyomaviruses and potentially involved in cellular transformation. Phylogenetic analysis revealed a close relationship of TSV with the Bornean orangutan polyomavirus and, more distantly, the Merkel cell polyomavirus that is found integrated in Merkel cell carcinomas of the skin. The presence of TSV in the affected patient's skin was confirmed by newly designed quantitative TSV-specific PCR, indicative of a viral load of 105 copies per cell. After topical cidofovir treatment, the lesions largely resolved coinciding with a reduction in TSV load. PCR screening demonstrated a 4% prevalence of TSV in an unrelated group of immunosuppressed transplant recipients without apparent disease. In conclusion, a new human polyomavirus was discovered and identified as the possible cause of trichodysplasia spinulosa in immunocompromized patients. The presence of TSV also in clinically unaffected individuals suggests frequent virus transmission causing subclinical, probably latent infections. Further studies have to reveal the impact of TSV infection in relation to other populations and diseases

    Fecal Calprotectin Excretion in Preterm Infants during the Neonatal Period

    Get PDF
    Fecal calprotectin has been proposed as a non-invasive marker of intestinal inflammation in inflammatory bowel disease in adults and children. Fecal calprotectin levels have been reported to be much higher in both healthy full-term and preterm infants than in children and adults.To determine the time course of fecal calprotectin (f-calprotectin) excretion in preterm infants from birth until hospital discharge and to identify factors influencing f-calprotectin levels in the first weeks of life, including bacterial establishment in the gut.F-calprotectin was determined using an ELISA assay in 147 samples obtained prospectively from 47 preterm infants (gestational age, and birth-weight interquartiles 27–29 weeks, and 880–1320 g, respectively) at birth, and at 2-week intervals until hospital discharge. (p = 0.047).During the first weeks of life, the high f-calprotectin values observed in preterm infants could be linked to the gut bacterial establishment

    Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase

    Get PDF
    Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the bla[subscript NDM] gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.Kinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr
    corecore