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Single-photon absorption and dynamic control of the exciton energy in a coupled
quantum-dot–cavity system
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We theoretically investigate the dynamic interaction of a quantum dot in a nanocavity with time-symmetric
single-photon pulses. The simulations, based on a wave-function approach, reveal that almost perfect single-
photon absorption occurs for quantum-dot–cavity systems operating on the edge between strong- and weak-
coupling regimes. The computed maximum absorption probability is close to unity for pulses with a typical
length comparable to half of the Rabi period. Furthermore, the dynamic control of the quantum-dot energy via
electric fields allows the freezing of the light-matter interaction, leaving the quantum dot in its excited state.
Shaping of single-photon wave packets by the electric field control is limited by the occurrence of chirping of the
single-photon pulse. This understanding of the interaction of single-photon pulses with the quantum-dot–cavity
system provides the basis for the development of advanced protocols for quantum-information processing in the
solid state.
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I. INTRODUCTION

Over the past decades it has been proved that quantum
communication and quantum computing can provide some
advantages compared to their classical counterparts [1]. But
the question of which physical implementation is most suited
remains open. The optimal qubit should satisfy two conflicting
requirements at the same time: First, it should be perfectly
decoupled from the environment because each interaction will
disturb the fragile quantum-mechanical system and induce
decoherence. On the other hand, a controlled interaction
between qubits is essential for the building blocks of quantum
computers as well as for the manipulation of information
in quantum communication network nodes [2]. Photons are
unchallenged as flying qubits due to weak decoherence and
excellent transport properties, but the vanishing small photon-
photon interaction is strongly disadvantageous.

In a fundamental work about the physical implementation
of quantum computing [3], the transfer of flying qubits into
stationary qubits (e.g., matter qubits), which provide the nec-
essary interaction, was proposed to overcome the limitations
of photonic qubits. This transformation requires a perfect
light-matter interface with unity probability emission and
absorption of flying qubits. Cavity quantum electrodynamics
provides a promising system for such an interface due to the
enhanced light-matter coupling.

Various systems can provide a stationary two-level system
coupled to a resonator mode including atoms [4,5] and
superconducting qubits [6,7]. Here, we focus on a solid-state
system, namely electron-hole pairs (excitons) in quantum dots
(QDs). The solid-state solution has a particular advantage,
because QDs can be integrated in a solid-state cavity and
they are accessible via waveguides, which enables in principle
large-scale integration. Their usefulness as nonclassical light
sources is well established [8]. The embedding of quantum
dots into single- and multimode cavities not only enhances
the light-matter interaction, it can also be used to improve
the performance of nonclassical light sources [9] as well as
to compensate for imperfections [10,11]. Furthermore, the

solid-state implementation opens the opportunity to manip-
ulate the QD exciton energies with electric fields.

In addition to the widely studied emission of photonic
qubits from quantum systems, also the absorption of single-
photon pulses is of fundamental interest for applications in
photonic quantum networks. The ultimate challenge is the
perfect quantum-state transfer from a source system to a
similar target system by means of a single photon. Without
further engineering, typical candidates for such network nodes,
atoms and quantum dots, emit asymmetric photon pulse
envelopes in the time domain with a sharp rise and a slow
decay tail. It has been shown that a two-level system in free
space behaves like a perfect absorber for pulses which perfectly
match the time-reversed spatiotemporal initial emitter profile,
i.e., photon wave packets with a slow rise and a sharp
decay [12]. In the light of these findings, the development
of quantum interfaces becomes quite challenging due to the
asymmetry of single-photon pulses emitted by a source and
the reduced absorption in a similar target system. The solution
involves sources that emit a time-symmetric single-photon
pulse. Different approaches in atomic quantum optics have
been undertaken in order to produce such symmetric single-
photon pulse envelopes [13,14] and to allow for efficient
quantum-state transfer between different quantum network
nodes [15,16]. Although these techniques can be applied
to three-level (�-type) atomic systems, they are difficult to
implement in the solid state due to the different level structure.

In this paper we investigate how efficiently quantum-
state transfer can be realized using symmetric single-photon
pulses, taking into account the specific tools available in
the solid-state cavity QED. We study the interaction, in
particular the absorption, of symmetric single-photon pulses
within a coupled QD-cavity system. The underlying theoretical
model is described in Sec. II. The results are drawn in
Sec. III, including the emission of single photons from the
quantum-dot–cavity system. For both processes, absorption
and emission, the impact of dynamic controlled light-matter
coupling via electric fields is discussed. Finally the paper is
closed with a summary and conclusions in Sec. IV.
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II. THEORETICAL MODEL

The model we employ is a two-level system coupled to a
cavity mode. The cavity mode itself leaks into a continuum
of modes referred to as an output field in the following. A
possible experimental realization would consist of a quantum
dot in a cavity, which is coupled via one mirror to a waveguide
(one-sided cavity). The waveguide coupling of the cavity
automatically ensures spatial overlap of the incident photons
and the cavity. Furthermore, we consider the possibility to
apply an electric field to the QD exciton in order to use the
Stark effect [17–19] and to tune the dot in and out of resonance
with the cavity mode. The realization of QDs in micropillar
and photonic-crystal cavities with electrical contacts for Stark
tuning has been shown experimentally by several groups
[19–23]. The scheme of the system of interest is shown
in Fig. 1(a) together with the relevant level structure. The
non-Hermitian Hamiltonian of the system reads (setting h̄ = 1)

H = ωca
+a + [ω

QD
(t) − iγ ]σ+σ + ig(aσ+ − a+σ )

+ i

√
κ

2π

∫ ωc+ωB

ωc−ωB

dω[a+b(ω) − ab+(ω)]

+
∫ ωc+ω

B

ωc−ω
B

dω[ωb+(ω)b(ω)], (1)

where a+(a), σ+(σ ), and b+(ω) (b(ω)) are the creation
(annihilation) operators for the cavity mode, the two-level
system, and the continuum modes of the waveguide, the last
obeying the standard commutation relation [b(ω),b+(ω′)] =
δ(ω − ω′). The cavity frequency is given by ωc and the exciton
energy is given by ωQD (t). We assume that in the output field
only modes within a finite bandwidth [ωc − ω

B
,ωc + ω

B
] have

non-negligible contributions to the dynamics. The possible
time dependence of the exciton energy is already included
but for the moment we keep ωQD (t) = ωQD constant. Finally,
γ is the decay rate of the quantum-dot exciton, g is the
coupling between cavity and exciton, and κ denotes the cavity
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FIG. 1. (Color online) Schematic of the system. (a) A quantum
dot couples via the cavity to a quasicontinuum of modes (left) and
the relevant energy levels of the system (right). (b) Population of
the output field modes |ck|2 vs time and detuning. (c) Inner cavity
dynamics: The black line corresponds to the QD exciton population
and the red line corresponds to the cavity mode population. The
simulation parameters are g = κ , γ = 0, w = 1/g.

decay into the waveguide, where we have used the flat-band
condition [24] representing a uniform coupling to all output
field modes. The QD decay γ is neglected in the following, but
it is still displayed in the equations for completeness. Indeed we
suppose that the system is operated at temperatures such that
the decoherence time is much longer (typically hundreds of pi-
coseconds) than the time of the calculated dynamics. Including
the decay term, the system dynamics can be obtained by using a
wave-function approach for dissipative quantum systems [25],
which is equivalent to master-equation-based techniques.

The first line of the Hamiltonian Eq. (1) describes the free
evolution of the cavity and the quantum dot, and the coupling
between these two. The second line describes the coupling
between the cavity mode and the continuum in the waveguide.
The last term governs the free evolution of the modes of the
continuum. We assume that the main decay channel of the
cavity is the leakage into the output field and we neglect all
other possible decay channels of the cavity. This assumption
is justified in high-Q photonic-crystal cavities coupled to
waveguides [26].

In order to solve the above equation numerically we employ
a discretization of the output field ensuring that the frequency
range 2ω

B
is much larger and the spacing between the output

field modes is much smaller than the cavity linewidth. The
Hamiltonian in a rotating frame reads

H = 	ca
+a + [	QD (t) − iγ ]σ+σ + ig(aσ+ − a+σ )

+ iκ ′
N∑

k=1

(a+bk − ab+
k ) +

N∑
k=1

	kb
+
k bk, (2)

where the output field coupling κ ′ =
√

κ	ω
2π

. The number of
discretized output modes, N , is set to 1024 in the simulations.
The frequency spacing between the quasicontinuum modes is
denoted by 	ω. The values 	QD , 	cav, and 	k are the energy
detunings of the two-level transition, the cavity, and the output
mode k from the rotating frame.

We use a wave-function approach [15,27,28] to simulate
the dynamics. The combination of the cavity-continuum
interaction and the wave-function approach allows us to
investigate the dynamics of arbitrarily shaped single-photon
pulses interacting with the cavity [27,28]. We expand the wave
function of the system in all possible states, limiting ourselves
to the case of a single excitation:

|
〉= [ccav|g〉|1〉 + cQD |e〉|0〉]|vac〉 + |g〉|0〉
N∑

k=1

ckb
+
k |vac〉.

(3)

The state |vac〉 denotes the vacuum state of all modes in the
quasicontinuum of the waveguide. The modulus square of the
amplitude ccav describes the probability to find one photon
in the cavity, cQD is the amplitude of the quantum dot in the
excited state, and ck is the amplitude of the quasicontinuum
mode k, satisfying, in the case of γ = 0,

|ccav|2 + |cQD |2 +
N∑

k=1

|ck|2 = 1. (4)
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Plugging this wave-function expansion into the time-
dependent Schrödinger equation i∂t |
〉 = H |
〉 yields a
system of coupled differential equations, which govern the
time evolution of the state amplitudes:

ċcav = −i	cccav − gcQD + κ ′
N∑

j=1

ck (5)

ċQD = gccav + −(i	QD + γ )cQD (6)

ċk = −i	kck − κ ′ccav. (7)

The coupled quantum-dot–cavity system interacts with
single-photon pulses. After a time T when the time evolution
is completed the pulse shape fout(t) and the output mode
amplitudes are connected via the inverse Fourier transform:

fout(t) = 1√
2π

N∑
k=1

ck(T )e−iωk(t−T ). (8)

In a similar way it is possible to drive the system with
a single-photon pulse by defining a pulse shape in the time
domain. We restrict ourselves in the following to Gaussian
single-photon pulses with the pulse central frequency resonant
with the cavity mode and temporal properties given by the
width w and t0:

fin(t) ∝ e
−(t−t0)2

2w2 . (9)

The Fourier transform of the pulse fin(t) gives the initial
values for the amplitudes ck , which evolve afterward in time
governed by Eqs. (5)–(7). The amplitudes have to be properly
normalized,

∑N
k=1 |ck(t = 0)|2 = 1, to ensure that only a single

photon is incident.
In the adiabatic limit, when the pulse amplitude is varying

slowly enough in comparison to the decay rate κ , the input
pulse remains almost unperturbed by the interaction with the
two-level system [28]. In contrast, the present study deals
with pulse lengths comparable to the decay time of the cavity
in order to achieve maximum absorption. Furthermore, we
assume that a symmetric photon pulse is provided by an
independent source, where the temporal width w can be chosen
freely. The issue of generating such a symmetric pulse from
the solid-state system is discussed later.

We note that the consequence of the quasicontinuum is a
spurious revival time of photons proportional to the inverse of
their frequency spacing tr = 2π/	ω, which sets a temporal
limit of the present modeling. Thus during the time evolution
all output field modes dephase and rephase, finding their initial
phase relationship back at the revival time tr . As a consequence
the photon wave packet in the output field spuriously acquires
a temporally changing phase, which is visible in fout. Since
this effect is induced by the discretization of the continuum, we
plot the amplitude |fout(t)| versus time. This is in agreement
with other works dealing with quasicontinuum models [27,28].

The present theoretical description can be easily modified
to account for different geometries, e.g., coupling to a second
waveguide. Also the extension to two photons may be possible
but it requires a more complicated analytical description and
more demanding numerics.

III. RESULTS AND DISCUSSION

A. Single-photon absorption

In the following we want to shed light on the interaction
of single photons with the coupled QD-cavity system, and
we specifically calculate the efficiency of the single-photon
absorption by the QD. The simulations are illustrated in
Figs. 1(b) and 1(c). The system is operated on the edge between
the strong- and weak-coupling regime, i.e., g = κ , and we
neglect the decay of the exciton by setting γ = 0. We start
with a Gaussian single-photon pulse in the output field as an
initial condition. The Fourier transform of fin(t) also yields a
Gaussian. The temporal evolution shows that after some time
the output field population |ck|2 goes almost to zero and the
pulse enters the cavity. The inner cavity dynamics is shown
in Fig. 1(c). The calculation displays that the photon pulse
is transferred into the quantum-dot state and via a temporal
excitation of the cavity mode emitted back into the output
field.

The pulse injection into the cavity depends on the pulse
central frequency and the specific parameters of the system. In
the case of weak coupling, a large detuning of the pulse central
frequency compared to the cavity mode results in reflection of
the pulse. On the other hand, in the strong-coupling regime, the
eigenstates of the system are given by the typical Rabi doublet
with peaks shifted by ±g from the initial cavity frequency
(assuming dot and cavity in resonance). Consequently, the
pulse only enters the cavity if the pulse central frequency is
close to the frequency of one of these eigenstates.

The efficiency of the single-photon absorption by the
quantum-dot exciton is given by the maximum of the ex-
citon population for a one-sided cavity system |cmax

QD
|2 =

max(|cQD (t)|2). If and only if the population goes to 1, the
system undergoes unity probability absorption of one photon
pulse at time T ,

|g〉|0〉
N∑

k=1

ckb
+
k |vac〉 → |e〉|0〉|vac〉. (10)

Figure 2(a) displays the maximum exciton population
during the interaction process illustrated in Figs. 1(b) and 1(c)
versus the cavity output field coupling κ and the incident pulse
length w. The calculations reveal that there is a maximum
absorption probability of about 0.97 around a pulse length w =
1/g and a cavity-output field coupling of κ = g. The vertical
dashed line shows the transition from the strong-coupling
(left) to the weak-coupling regime (right) and the horizontal
dashed line shows half of the Rabi period (1/g). The maximum
absorption occurs around the crossing of these two lines. For
g values typical of InAs quantum dots in photonic-crystal
cavities (g ≈ 85 μeV [29]), this corresponds to a pulse length
of w ≈ 8 ps.

The obtained behavior of the quantum-dot absorption can
be understood in terms of the time-reversal symmetry. It has
been shown that a quantum dot in free space behaves like
a perfect absorber if the incident pulse perfectly matches
the time-reversed spatiotemporal emitter profile [12]. In the
present case, due to the waveguide coupling, spatial matching
is automatically ensured, which is different from the free-space
scenario. A closer look at the emission properties of the system
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FIG. 2. (a) Maximum quantum-dot population |cmax
QD

|2 during the
time evolution vs cavity decay κ and pulse length w of the incident
photon pulse for g = const. The vertical dashed line shows the
transition from the strong-coupling regime (left) to the weak-coupling
regime (right) while the horizontal line corresponds to half of the Rabi
period (=1/g). The initial emitter profiles |fout(t)| are shown (b) in
the strong-coupling regime, (c) on the edge between strong- and
weak-coupling regimes, and (d) in the weak-coupling regime.

in the different regimes allows us to shed some light on
the observed behavior. We calculate the temporal shape of
the emitted pulse envelope (emitter profile) with the above
system of equations, starting with one exciton in the quantum
dot as the initial state |cQD |2 = 1. In the strong-coupling
regime the emitter profile reveals Rabi oscillations in the time
domain as shown in Fig. 2(b). The comparison between the
incident Gaussian single-photon pulse and the emitter profile
shows a small overlap. Similarly, in the weak-coupling regime
[Fig. 2(d)], the comparison shows a strong mismatch due
to the long decay tail of the emitted pulse. In contrast, on
the edge between the strong- and weak-coupling regimes the
emitter emission profile [Fig. 2(c)] almost perfectly matches
the incident symmetric Gaussian pulse due to the presence of
the cavity coupling and the resulting increase of spontaneous
emission (Purcell effect). The absorption is robust against
small changes of the system parameters indicated by the rather
broad maximum in Fig. 2(a).

An analytical estimate of the maximum absorption value
can be obtained by calculating the overlap integral of the
incident pulse fin and the initial emitter profile f0:

A = |∫ f ∗
in(t)f0(t)dt |2∫ |fin(t)|2dt

∫ |f0(t)|2dt
. (11)

Using the calculated emitter profile and the Gaussian input
pulse for the parameters at the maximum absorption in Fig. 2(a)
and maximizing the overlap integral by shifting the time
axis, we obtain A = 0.97, which exactly corresponds to the
numerical result. The results show clearly that the absorption
and the emission process are inextricably linked due to the
time-reversal symmetry of the system.

B. Photon storage using dynamic Stark tuning

As one can see in Fig. 1(c) the quantum dot remains only
for a very short time in its excited state due to the coherent
light-matter interaction. This makes the manipulation of the
absorbed qubit very challenging. Furthermore, the preparation
of the quantum dot in its excited state in order to obtain a
photon-photon nonlinearity mediated by the quantum dot is
very challenging because of the short timescale. In order to
keep the quantum dot in its excited state, dynamic Stark tuning
can provide a solution, which is unique to solid-state systems.
Assuming that the shift of the quantum-dot energies happens
instantaneously with the applied field, the quantum dot can
be tuned out of resonance once it has reached the maximum
state amplitude. Furthermore, after some time shorter than
the dipole decay time γ (typically on the order of hundreds
of picoseconds) it can be tuned back into resonance and the
stored photon can be released.

The simulations of the dynamic control of the light-matter
coupling are shown in Fig. 3(a), where we display the time-
dependent detuning of the quantum dot (upper panel) and the
inner cavity dynamics (lower panel) when a Gaussian single-
photon pulse (w = 1/g) is sent to the cavity (κ = g). Right
after the absorption, the quantum dot is shifted out of the
cavity resonance within timescales on the order of t < 1/κ .
Still some small dynamic features occur in the cavity and the
quantum-dot amplitude but most of the energy can be stored
in the QD and the dot-cavity interaction can be switched off
before it is transferred back to the field. After some time the
quantum dot is brought back in resonance with the cavity mode
and the stored photon is released.

The released pulse and its comparison to the time-shifted
incident pulse are shown in Fig. 3(b). Their pulse envelopes
are in good agreement because the emitter profile in the strong
Purcell regime is close to symmetric. The complete process,
absorption and release, can be done with a fidelity of ≈0.94
(≈0.972), mainly limited by the reduced absorption and the
pulse envelope mismatch. For a perfect source the process
should have unity fidelity.

k
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FIG. 3. (Color online) Dynamic control of the light-matter
coupling: (a) QD detuning vs time (upper panel) and inner cav-
ity dynamics (lower panel), where the black line corresponds to
the exciton-state population |cQD |2 and the red line corresponds
to the cavity mode population |ccav|2. (b) Emitted pulse fout(t) with
the time-shifted incident pulse fin(t). The parameters are taken as
g = κ , γ = 0, and w = 1/g.
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The main constraint for the realization of the dynamic con-
trol is the fast change of the electric field. The present systems
undergo dynamics in the timescale of tens of picoseconds,
and its control requires electrical bandwidth above 50 GHz,
which is feasible but challenging with available electronics.
In order to shift the light-matter dynamics into a more easily
manageable temporal scale, one has to use cavities with higher-
quality factors and quantum dots with smaller cavity coupling
g. This would allow to slow down the system dynamics to the
lower gigahertz range, where electrical control is easier.

C. Shaping of the single-photon pulse

After the previous discussion of the absorption process we
now investigate the possibility of dynamically engineering
the quantum-dot–cavity interaction in order to store and to
produce a time-symmetric photon pulse with unity fidelity. In
the previous discussion, the Stark tuning is used to abruptly
switch on and off the light-matter interaction in the system.
By changing the detuning on a timescale t ≈ 1/g it can be
also applied to shape the wave packet of the single-photon
pulse leaking out of the cavity. This has been proposed to
produce symmetric photon pulse envelopes [30]. In the present
case, the technique is used to shape the first part of photon
pulse during the emission process, which is governed mainly
by the photon-exciton coupling constant g. By dynamically
changing the quantum-dot energy the effective coupling to
the cavity mode can be manipulated and thus the pulse shape
can be controlled. The starting point for the simulation is one
exciton in the far-detuned QD. After some time the electric
field is applied and shifts the quantum dot into resonance
with the cavity. By carefully adjusting the slope of the electric
field tuning, the emitted pulse shape can be engineered to be
remarkably close to a Gaussian envelope in the time domain
as shown in Figs. 4(a) and 4(b).

The resulting emitter looks at first glance like a perfect
single-photon source which emits symmetric single-photon
pulses. Such a source would also have the advantage that the
absorption of the pulse by a similar system would be possible
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FIG. 4. (Color online) Shaping of the photon wave packet.
(a) Detuning of the quantum dot (upper panel) and inner cavity
dynamics (lower panel). The transition from nonzero to zero detuning
is indicated by the dashed line. (b) Emitted single-photon pulse (solid
black line) with a Gaussian fit (dotted red line) and the phase � of
the pulse shape fout(t) vs time. The parameters are chosen the same
as in Fig. 3.

with unity probability, enabling highly efficient quantum-state
transfer between two nodes [15]. Unfortunately, as one can
see in Fig. 4(a), the quantum dot already starts to emit into
the cavity mode even when the detuning is slightly different
from zero. The resulting output mode population becomes
asymmetric in the frequency space and the corresponding
output pulse fout(t) has a time-varying phase as shown in the
lower panel of Fig. 4(b).

Using the pulse envelope shown in Fig. 4(b) as inci-
dent pulse in the simulations yields a maximum absorption
|cmax

QD
|2 < 0.8 due to the frequency chirp, and the maximum

absorption of 0.97 obtained in the previous section cannot be
improved.

One may try to engineer the pulse in such a way that the
frequency chirp becomes time symmetric. The rising part of the
photon pulse is determined by the coupling constant between
the exciton and the quantum dot g while the decay is mainly
governed by the complex interplay of QD-cavity coupling g

and the leakage out of the cavity, κ . By changing dynamically
the detuning and thus the effective coupling of exciton and
cavity during the first part of the emission process [κt < 7.5
in Fig. 4(a)], the quantum-dot–cavity interaction can be slowed
down. This results in a symmetric pulse envelope in the time
domain but asymmetric in frequency space as shown in Fig. 4.

On the other hand, the symmetric frequency chirp require-
ment implies 	QD (t) to be time symmetric around t = 7.5/κ .
This condition immediately breaks, at least for the parameters
used in Fig. 4, the symmetry of |fout| and the decay part is
significantly slowed down in comparison to the rising part of
the pulse due to the complex interplay of detuning-induced
reduced effective exciton-cavity coupling and cavity decay
at these times. The photon pulses in Figs. 3(b) and 4(b)
show the two extreme cases where either the time envelope
(Fig. 4) or the frequency distribution (Fig. 3) is symmetric.
Extensive numerical studies suggest that the emission of a
perfect symmetric pulse is not possible by dynamic Stark
tuning of the quantum dot. Nevertheless, further studies are
required to prove this conclusion.

Dynamic Q tuning [31,32] of the cavity together with the
application of electric fields might be more complex tools to
achieve a perfect pulse, but they are not in the scope of the
present paper.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have shown that a coupled quantum-dot–
cavity system acts as an almost perfect absorber for Gaussian
single-photon pulses when the system is operated on the
edge between weak- and strong-coupling regimes. Under this
condition the incident pulse closely matches the time-inverted
initial emitter profile. Furthermore, we have shown that the
dynamic control of the quantum-dot energies can be used
as an attractive tool for efficient quantum-state preparation.
Shaping of single-photon wave packets by the electric field
control is limited by the occurrence of chirping of the
single-photon pulse preventing applications in quantum-state
transfer protocols. The fast electric field control represents
an additional degree of freedom in order to deterministically
engineer the light-matter interaction in the solid-state system.
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