1,442 research outputs found
Scanner
An aerial vehicle rotating in gyroscopic fashion about one of its axes has an optical system which scans an area below the vehicle in determined relation to vehicle rotation. A sensing device is provided to sense the physical condition of the area of scan and optical means are associated to direct the physical intelligence received from the scan area to the sensing means. Means are provided to incrementally move the optical means through a series of steps to effect sequential line scan of the area being viewed keyed to the rotational rate of the vehicle
Recommended from our members
Alteration and Oxidiation of an Olivine Lamprophyre Dike from Southern Utah, USA: An Analog for Mars
We report on oxidized basaltic dike intrusions on the Colorado Plateau as analog for Martian basalt oxidation
Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments
Single molecule mechanical unfolding experiments are beginning to provide
profiles of the complex energy landscape of biomolecules. In order to obtain
reliable estimates of the energy landscape characteristics it is necessary to
combine the experimental measurements with sound theoretical models and
simulations. Here, we show how by using temperature as a variable in mechanical
unfolding of biomolecules in laser optical tweezer or AFM experiments the
roughness of the energy landscape can be measured without making any
assumptions about the underlying reaction oordinate. The efficacy of the
formalism is illustrated by reviewing experimental results that have directly
measured roughness in a protein-protein complex. The roughness model can also
be used to interpret experiments on forced-unfolding of proteins in which
temperature is varied. Estimates of other aspects of the energy landscape such
as free energy barriers or the transition state (TS) locations could depend on
the precise model used to analyze the experimental data. We illustrate the
inherent difficulties in obtaining the transition state location from loading
rate or force-dependent unfolding rates. Because the transition state moves as
the force or the loading rate is varied it is in general difficult to invert
the experimental data unless the curvature at the top of the one dimensional
free energy profile is large, i.e the barrier is sharp. The independence of the
TS location on force holds good only for brittle or hard biomolecules whereas
the TS location changes considerably if the molecule is soft or plastic. We
also comment on the usefulness of extension of the molecule as a surrogate
reaction coordinate especially in the context of force-quench refolding of
proteins and RNA.Comment: 44 pages, 7 figure
The hydration state of HO(aq)
The HO(aq) ion participates in myriad aqueous phase chemical processes of
biological and chemical interest. A molecularly valid description of its
hydration state, currently poorly understood, is a natural prerequisite to
modeling chemical transformations involving HO(aq). Here it is shown that
the statistical mechanical quasi-chemical theory of solutions predicts that
is the dominant inner shell coordination
structure for HO(aq) under standard conditions. Experimental observations
and other theoretical calculations are adduced to support this conclusion.
Hydration free energies of neutral combinations of simple cations with
HO(aq) are evaluated and agree well with experimental values.Comment: 10 pages, 1 figur
The 21cm Signature of the First Stars
We predict the 21-cm signature of the first metal-free stars. The soft X-rays
emitted by these stars penetrate the atomic medium around their host halos,
generating Lyman alpha photons that couple the spin and kinetic temperatures.
These creates a region we call the Lyman alpha sphere, visible in 21-cm against
the CMB, which is much larger than the HII region produced by the same star.
The spin and kinetic temperatures are strongly coupled before the X-rays can
substantially heat the medium, implying that a strong 21-cm absorption signal
from the adiabatically cooled gas in Hubble expansion around the star is
expected when the medium has not been heated previously. A central region of
emission from the gas heated by the soft X-rays is also present although with a
weaker signal than the absorption. The Lyman alpha sphere is a universal
signature that should be observed around any first star illuminating its
vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere
can be calculated as a function of the luminosity, spectrum and age of the
star. For a star of a few hundred solar masses and zero metallicity (as
expected for the first stars), the physical radius of the Lyman alpha sphere
can reach tens of kiloparsecs. The first metal-free stars should be strongly
clustered because of high cosmic biasing; this implies that the regions
producing a 21-cm absorption signal may contain more than one star and will
generally be irregular and not spherical, because of the complex distribution
of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres,
which would be present at redshifts in the Cold Dark Matter model.
Their observation would represent a direct proof of the detection of a first
star.Comment: replaced with ApJ accepted version. Many minor revisions and
additional references, major results unchange
The first detection of near-infrared CN bands in active galactic nuclei: signature of star formation
We present the first detection of the near-infrared CN absorption band in the
nuclear spectra of active galactic nuclei (AGN). This feature is a recent star
formation tracer, being particularly strong in carbon stars. The equivalent
width of the CN line correlates with that of the CO at 2.3 microns, as expected
in stellar populations (SP) with ages between ~ 0.2 and ~ 2 Gyr. The presence
of the 1.1 microns CN band in the spectra of the sources is taken as an
unambiguous evidence of the presence of young/intermediate SP close to the
central source of the AGN. Near-infrared bands can be powerful age indicators
for star formation connected to AGN, the understanding of which is crucial in
the context of galaxy formation and AGN feedback.Comment: Accepted for publication in The Astrophysical Journal Letters. 4
pages, 3 figure
Formation of Primordial Protostars
The evolution of collapsing metal free protostellar clouds is investigated
for various masses and initial conditions.
We perform hydrodynamical calculations for spherically symmetric clouds
taking account of radiative transfer of the molecular hydrogen lines and the
continuum, as well as of chemistry of the molecular hydrogen.
The collapse is found to proceed almost self-similarly like Larson-Penston
similarity solution.
In the course of the collapse, efficient three-body processes transform
atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular
form.
However, hydrogen in the outer part remains totally atomic although there is
an intervening transitional layer of several solar masses, where hydrogen is in
partially molecular form.
No opaque transient core is formed although clouds become optically thick to
H collision-induced absorption continuum, since H dissociation
follows successively.
When the central part of the cloud reaches stellar densities (), a very small hydrostatic core (\sim
5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the
ambient gas accretes onto it.
The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun}
{\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where is instantaneous
mass of the central core, by using a similarity solution which reproduces the
evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
Recent star formation in clusters of galaxies: extreme compact starbursts in A539 and A634
We report on the detection of two Halpha-emitting extreme compact objects
from deep images of the Abell 634 and Abell 539 clusters of galaxies at z ~
0.03. Follow up long slit spectroscopy of these two unresolved sources revealed
that they are members of their respective clusters showing HII type spectra.
The luminosity and the extreme equivalent width of Halpha+[NII] measured for
these sources, together with their very compact appearance, has raised the
question about the origin of these intense starbursts in the cluster
environment. We propose the compact starburst in Abell 539 resulted from the
compression of the interstellar gas of a dwarf galaxy when entering the cluster
core; while the starburst galaxy in Abell 634 is likely to be the result of a
galaxy-galaxy interaction, illustrating the preprocessing of galaxies during
their infall towards the central regions of clusters. The contribution of these
compact star-forming dwarf galaxies to the star formation history of galaxy
clusters is discussed, as well as a possible link with the recently discovered
early-type ultra-compact dwarf galaxies. We note that these extreme objects
will be rarely detected in normal magnitude-limited optical or NIR surveys,
mainly due to their low stellar masses (of the order of 10^6 solar masses),
whereas they will easily show up in dedicated Halpha surveys given the high
equivalent width of their emission lines.Comment: Accepted for publication in the Astronomical Journal. 31 pages, 10
fig
Signatures of the Youngest Starbursts: Optically-thick Thermal Bremsstrahlung Radio Sources in Henize 2-10
VLA radio continuum imaging reveals compact (<8 pc) ~1 mJy radio sources in
the central 5" starburst region of the blue compact galaxy Henize 2-10. We
interpret these radio knots as extremely young, ultra-dense HII regions. We
model their luminosities and spectral energy distributions, finding that they
are consistent with unusually dense HII regions having electron densities, 1500
cm^-3 < n_e < 5000 cm^-3, and sizes of 3-8 pc. Since these H II regions are not
visible in optical images, we propose that the radio data preferentially reveal
the youngest, densest, and most highly obscured starforming events. Energy
considerations imply that each of the five \HII regions contains ~750 O7V
equivalent stars, greater than the number found in 30 Doradus in the LMC. The
high densities imply an over-pressure compared to the typical interstellar
medium so that such objects must be short-lived (<0.5 Myr expansion
timescales). We conclude that the radio continuum maps reveal the very young
(<0.5 Myr) precursors of ``super starclusters'' or ``proto globular clusters''
which are prominent at optical and UV wavelengths in He 2-10. If the
ultra-dense HII regions are typical of those which we predict will be found in
other starbursting systems, then super starclusters spend 15% of their lifetime
in heavily-obscured environments, similar to Galactic ultra-compact HII
regions. This body of work leads us to propose that massive extragalactic star
clusters (i.e. proto globular clusters) with ages <10^6 yr may be most easily
identified by finding compact radio sources with optically-thick thermal
bremsstrahlung spectral signatures.Comment: AASTeX, 8 figures 2 included with psfig in text; other 6 in jpeg
format; Postscript versions of figures may be found at
http://zem.ucolick.org/chip/Research/young_clusters.html -- Accepted for
publication in the Astrophysical Journa
- …