1,773 research outputs found

    Autonomous Real Time Architecture for High Performance Mobile Robots

    Get PDF
    Highly-dynamic robotic systems, such as hopping robots, require light, computationally and energy efficient on-board units for control. This paper presents such a computational unit together with a software architecture for achieving high-performance behaviors, such as balancing and hopping. These demanding behaviors require accurate dynamic calculations, high-bandwidth control, and fast real-time state estimation. The proposed system consists of cheap and off-the-shelf electronics that are detailed in this paper. The effectiveness of the presented approach is validated on a balancing machine called Tippy, which is able to achieve fast tracking of command signals while balancing. The experimental results of this paper demonstrate that reliable real-time software for demanding high-performance robotic applications, which require fast control loops and intensive calculations, can be achieved with light, low cost and energy efficient components, which can empower the widespread use and experimentation of high-performance robots worldwide

    Optimizing Wearable Assistive Devices with Neuromuscular Models and Optimal Control

    Get PDF
    The coupling of human movement dynamics with the function and design of wearable assistive devices is vital to better understand the interaction between the two. Advanced neuromuscular models and optimal control formulations provide the possibility to study and improve this interaction. In addition, optimal control can also be used to generate predictive simulations that generate novel movements for the human model under varying optimization criterion

    Height Systems and Vertical Datums: a Review in the Australian Context

    Get PDF
    This paper reviews (without equations) the various definitions of height systems and vertical geodetic datum surfaces, together with their practical realisation for users in Australia. Excluding geopotential numbers, a height system is a one-dimensional coordinate system used to express the metric distance (height) of a point from some reference surface. Its definition varies according to the reference surface chosen and the path along which the height is measured. A vertical geodetic datum is the practical realisation of a height system and its reference surface for users, nominally tied to mean sea level. In Australia, the normal-orthometric height system is used, which is embedded in the Australian Height Datum (AHD). The AHD was realised by the adjustment of ~195,000 km of spirit-levelling observations fixed to limited-term observations of mean sea level at multiple tide-gauges. The paper ends by giving some explanation of the problems with the AHD and of the differences between the AHD and the national geoid model, pointing out that it is preferable to recompute the AHD

    GPS-Geodetic Deformation Monitoring of the South-west Seismic Zone of Western Australia: Review, Description of Methodology and Results from Epoch-one

    Get PDF
    The south-west seismic zone (SWSZ) is a northwest-southeast trending belt of intraplate earthquake activity that occurs in the south-western corner of Western Australia, and is one of the most seismically active areas in Australia. Since the SWSZ lies as close as ~150 km from the ~1.4 million population of the Perth region, it poses a distinct seismic hazard. Earthquake activity recorded by Geoscience Australia over the past three decades suggests that the SWSZ could be deforming by 0.5-5 mmy-1. However, little is currently known about the magnitude and orientation of this deformation, and whether there is any associated surface expression. Previous geodetic studies of the SWSZ that used both terrestrial and Global Positioning System (GPS) techniques are inconclusive, due mainly to the imprecision of the technologies used in relation to the likely small amount of any surface deformation. Therefore, a new 48-point GPS-geodetic monitoring network has been established across the SWSZ to attempt to detect surface deformation, for which epoch-one episodic GPS-geodetic measurements were made in May 2002. This paper briefly reviews previous attempts to geodetically measure surface deformation across the SWSZ, summarises the scientific rationale for the new project, describes the network design and observations used, results of the May 2002 campaign (epoch-one) and discusses future work, including issues pertaining to the likely amount of surface deformation that can be detected

    Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations

    Get PDF
    New Zealand uses 13 separate local vertical datums (LVDs) based on normal-orthometric-corrected precise geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 m to 0.58 m with an average standard deviation of 0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models do have a role in vertical datum unification

    Symbolic vector/dyadic multibody formalism for tree-topology systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76159/1/AIAA-20780-671.pd
    corecore