1,050 research outputs found
BLITZEN: A highly integrated massively parallel machine
The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting
Time-Gated Topographic LIDAR Scene Simulation
The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model has been developed at the RochesterInstitute of Technology (RIT) for over a decade. The model is an established, first-principles based scene simulationtool that has been focused on passive multi- and hyper-spectral sensing from the visible to long wave infrared (0.4 to 14 µm). Leveraging photon mapping techniques utilized by the computer graphics community, a first-principles based elastic Light Detection and Ranging (LIDAR) model was incorporated into the passive radiometry framework so that the model calculates arbitrary, time-gated radiances reaching the sensor for both the atmospheric and topographicreturns. The active LIDAR module handles a wide variety of complicated scene geometries, a diverse set of surface and participating media optical characteristics, multiple bounce and multiple scattering effects, and a flexible suite of sensormodels. This paper will present the numerical approaches employed to predict sensor reaching radiances andcomparisons with analytically predicted results. Representative data sets generated by the DIRSIG model for a topographical LIDAR will be shown. Additionally, the results from phenomenological case studies including standard terrain topography, forest canopy penetration, and camouflaged hard targets will be presented
Observations on the vibration of axially-tensioned elastomeric pipes conveying fluids
A study of the effect of axial tension on the vibration of a single-span elastomeric pipe clamped at both ends conveying fluid has been carried out both experimentally and theoretically. A new mathematical model using a penalty function technique and the method of kinematic correction and fictitious loads has been developed. The influence of flowing fluid and axial tension on natural frequencies and mode shapes of the system has been described using this model and compared with experimental observations. Linear and non-linear dynamic response of the harmonically excited pipe has also been investigated for varying flow velocities and initial axial tensions
Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles
Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized
Spectral geometry, homogeneous spaces, and differential forms with finite Fourier series
Let G be a compact Lie group acting transitively on Riemannian manifolds M
and N. Let p be a G equivariant Riemannian submersion from M to N. We show that
a smooth differential form on N has finite Fourier series if and only if the
pull back has finite Fourier series on
Brownian Thermal Noise in Multilayer Coated Mirrors
We analyze the Brownian thermal noise of a multi-layer dielectric coating,
used in high-precision optical measurements including interferometric
gravitational-wave detectors. We assume the coating material to be isotropic,
and therefore study thermal noises arising from shear and bulk losses of the
coating materials. We show that coating noise arises not only from layer
thickness fluctuations, but also from fluctuations of the interface between the
coating and substrate, driven by internal fluctuating stresses of the coating.
In addition, the non-zero photoeleastic coefficients of the thin films modifies
the influence of the thermal noise on the laser field. The thickness
fluctuations of different layers are statistically independent, however, there
exists a finite coherence between layers and the substrate-coating interface.
Taking into account uncertainties in material parameters, we show that
significant uncertainties still exist in estimating coating Brownian noise.Comment: 26 pages, 18 figure
An unreported variation of the cervical vagus nerve: anatomical and histological observations
Variations involving the cervical portion of the vagus nerve are seemingly
very rare. We report an adult male found to harbour a right cervical vagus
nerve that crossed anterior to the right common carotid artery to terminate
in the lateral aspect of the thyroid gland. A very small continuation of this
nerve was found to continue distally into the thorax. Histologically, this part of the vagus nerve did not contain ganglion or other cell bodies. There were no heterologous inclusions (thyroid, parathyroid, thymus, salivary gland or branchial cleft remnants) present. Although grossly there was a connection into the thyroid gland, this was not observed histologically. No signs of trauma were found to the ipsilateral neck region. We hypothesise that this variation is due to entanglement between the thyroid gland and cervical vagus nerve during development. This rare variation might be considered by the clinician who operates in the cervical region or interprets imaging of the neck. To our knowledge, a vagus nerve with the above described morphology has not been described
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants
Interaction of reed and acoustic resonator in clarinetlike systems
Sound emergence in clarinetlike instruments is investigated in terms of
instability of the static regime. Various models of reed-bore coupling are
considered, from the pioneering work of Wilson and Beavers ["Operating modes of
the clarinet", J. Acoust. Soc. Am. 56, 653--658 (1974)] to more recent modeling
including viscothermal bore losses and vena contracta at the reed inlet. The
pressure threshold above which these models may oscillate as well as the
frequency of oscillation at threshold are calculated. In addition to Wilson and
Beavers' previous conclusions concerning the role of the reed damping in the
selection of the register the instrument will play on, the influence of the
reed motion induced flow is also emphasized, particularly its effect on playing
frequencies, contributing to reduce discrepancies between Wilson and Beavers'
experimental results and theory, despite discrepancies still remain concerning
the pressure threshold. Finally, analytical approximations of the oscillating
solution based on Fourier series expansion are obtained in the vicinity of the
threshold of oscillation. This allows to emphasize the conditions which
determine the nature of the bifurcation (direct or inverse) through which the
note may emerge, with therefore important consequences on the musical playing
performances
- …