6,981 research outputs found

    Adiabatic Gate Teleportation

    Full text link
    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. Notably this construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.Comment: 4 pages, 1 figure, with additional 3 pages and 2 figures in an appendix. v2 Refs added. Video abstract available at http://www.quantiki.org/video_abstracts/0905090

    The Optimal Single Copy Measurement for the Hidden Subgroup Problem

    Full text link
    The optimization of measurements for the state distinction problem has recently been applied to the theory of quantum algorithms with considerable successes, including efficient new quantum algorithms for the non-abelian hidden subgroup problem. Previous work has identified the optimal single copy measurement for the hidden subgroup problem over abelian groups as well as for the non-abelian problem in the setting where the subgroups are restricted to be all conjugate to each other. Here we describe the optimal single copy measurement for the hidden subgroup problem when all of the subgroups of the group are given with equal a priori probability. The optimal measurement is seen to be a hybrid of the two previously discovered single copy optimal measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe

    Coherence-Preserving Quantum Bits

    Full text link
    Real quantum systems couple to their environment and lose their intrinsic quantum nature through the process known as decoherence. Here we present a method for minimizing decoherence by making it energetically unfavorable. We present a Hamiltonian made up solely of two-body interactions between four two-level systems (qubits) which has a two-fold degenerate ground state. This degenerate ground state has the property that any decoherence process acting on an individual physical qubit must supply energy from the bath to the system. Quantum information can be encoded into the degeneracy of the ground state and such coherence-preserving qubits will then be robust to local decoherence at low bath temperatures. We show how this quantum information can be universally manipulated and indicate how this approach may be applied to a quantum dot quantum computer.Comment: 5 pages, 1 figur

    The reduced cost of providing a nationally recognised service for familial hypercholesterolaemia

    No full text
    OBJECTIVE: Familial hypercholesterolaemia (FH) affects 1 in 500 people in the UK population and is associated with premature morbidity and mortality from coronary heart disease. In 2008, National Institute for Health and Care Excellence (NICE) recommended genetic testing of potential FH index cases and cascade testing of their relatives. Commissioners have been slow to respond although there is strong evidence of cost and clinical effectiveness. Our study quantifies the recent reduced cost of providing a FH service using generic atorvastatin and compares NICE costing estimates with three suggested alternative models of care (a specialist-led service, a dual model service where general practitioners (GPs) can access specialist advice, and a GP-led service).METHODS: Revision of existing 3?year costing template provided by NICE for FH services, and prediction of costs for running a programme over 10?years. Costs were modelled for the first population-based FH service in England which covers Southampton, Hampshire, Isle of Wight and Portsmouth (SHIP). Population 1.95 million.RESULTS: With expiry of the Lipitor (Pfizer atorvastatin) patent the cost of providing a 10-year FH service in SHIP reduces by 42.5% (ÂŁ4.88 million on patent vs ÂŁ2.80 million off patent). Further cost reductions are possible as a result of the reduced cost of DNA testing, more management in general practice, and lower referral rates to specialists. For instance a dual-care model with GP management of patients supported by specialist advice when required, costs ÂŁ1.89 million.CONCLUSIONS: The three alternative models of care are now <50% of the cost of the original estimates undertaken by NICE

    Arkansas Wheat Cultivar Performance Tests 2010-2011

    Get PDF
    Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers

    Cosmic Shear of the Microwave Background: The Curl Diagnostic

    Get PDF
    Weak-lensing distortions of the cosmic-microwave-background (CMB) temperature and polarization patterns can reveal important clues to the intervening large-scale structure. The effect of lensing is to deflect the primary temperature and polarization signal to slightly different locations on the sky. Deflections due to density fluctuations, gradient-type for the gradient of the projected gravitational potential, give a direct measure of the mass distribution. Curl-type deflections can be induced by, for example, a primordial background of gravitational waves from inflation or by second-order effects related to lensing by density perturbations. Whereas gradient-type deflections are expected to dominate, we show that curl-type deflections can provide a useful test of systematics and serve to indicate the presence of confusing secondary and foreground non-Gaussian signals.Comment: 8 pages, 3 figures; PRD submitte

    Few-body spin couplings and their implications for universal quantum computation

    Full text link
    Electron spins in semiconductor quantum dots are promising candidates for the experimental realization of solid-state qubits. We analyze the dynamics of a system of three qubits arranged in a linear geometry and a system of four qubits arranged in a square geometry. Calculations are performed for several quantum dot confining potentials. In the three-qubit case, three-body effects are identified that have an important quantitative influence upon quantum computation. In the four-qubit case, the full Hamiltonian is found to include both three-body and four-body interactions that significantly influence the dynamics in physically relevant parameter regimes. We consider the implications of these results for the encoded universality paradigm applied to the four-electron qubit code; in particular, we consider what is required to circumvent the four-body effects in an encoded system (four spins per encoded qubit) by the appropriate tuning of experimental parameters.Comment: 1st version: 33 pages, 25 figures. Described at APS March Meeting in 2004 (P36.010) and 2005 (B17.00009). Most figures made uglier here to reduce file size. 2nd version: 19 pages, 9 figures. Much mathematical detail chopped away after hearing from journal referee; a few typos correcte

    The Voluntary Adjustment of Railroad Obligations

    Get PDF
    Automatic memory management techniques eliminate many programming errors that are both hard to find and to correct. However, these techniques are not yet used in embedded systems with hard realtime applications. The reason is that current methods for automatic memory management have a number of drawbacks. The two major ones are: (1) not being able to always guarantee short real-time deadlines and (2) using large amounts of extra memory. Memory is usually a scarce resource in embedded applications. In this paper we present a new technique, Real-Time Reference Counting (RTRC) that overcomes the current problems and makes automatic memory management attractive also for hard real-time applications. The main contribution of RTRC is that often all memory can be used to store live objects. This should be compared to a memory overhead of about 500% for garbage collectors based on copying techniques and about 50% for garbage collectors based on mark-and-sweep techniques

    The Stability of Quantum Concatenated Code Hamiltonians

    Full text link
    Protecting quantum information from the detrimental effects of decoherence and lack of precise quantum control is a central challenge that must be overcome if a large robust quantum computer is to be constructed. The traditional approach to achieving this is via active quantum error correction using fault-tolerant techniques. An alternative to this approach is to engineer strongly interacting many-body quantum systems that enact the quantum error correction via the natural dynamics of these systems. Here we present a method for achieving this based on the concept of concatenated quantum error correcting codes. We define a class of Hamiltonians whose ground states are concatenated quantum codes and whose energy landscape naturally causes quantum error correction. We analyze these Hamiltonians for robustness and suggest methods for implementing these highly unnatural Hamiltonians.Comment: 18 pages, small corrections and clarification

    Integral-Field Spectroscopy of the Post Red Supergiant IRC +10420: evidence for an axi-symmetric wind

    Full text link
    We present NAOMI/OASIS adaptive-optics assisted integral-field spectroscopy of the transitional massive hypergiant IRC +10420, an extreme mass-losing star apparently in the process of evolving from a Red Supergiant toward the Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the star, we study the appearance of the line-emission from the inner wind as viewed when reflected off the surrounding nebula. We find that, contrary to previous work, there is strong evidence for wind axi-symmetry, based on the equivalent-width and velocity variations of Hα\alpha and Fe {\sc ii} λ\lambda6516. We attribute this behaviour to the appearance of the complex line-profiles when viewed from different angles. We also speculate that the Ti {\sc ii} emission originates in the outer nebula in a region analogous to the Strontium Filament of η\eta Carinae, based on the morphology of the line-emission. Finally, we suggest that the present-day axisymmetric wind of IRC +10420, combined with its continued blueward evolution, is evidence that the star is evolving toward the B[e] supergiant phase.Comment: 22 pages, 9 figures, accepted for publication in ApJ. B&W-optimized version can be downloaded from http://www.cis.rit.edu/~bxdpci/pubs.htm
    • …
    corecore