We present NAOMI/OASIS adaptive-optics assisted integral-field spectroscopy
of the transitional massive hypergiant IRC +10420, an extreme mass-losing star
apparently in the process of evolving from a Red Supergiant toward the
Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the
star, we study the appearance of the line-emission from the inner wind as
viewed when reflected off the surrounding nebula. We find that, contrary to
previous work, there is strong evidence for wind axi-symmetry, based on the
equivalent-width and velocity variations of Hα and Fe {\sc ii}
λ6516. We attribute this behaviour to the appearance of the complex
line-profiles when viewed from different angles. We also speculate that the Ti
{\sc ii} emission originates in the outer nebula in a region analogous to the
Strontium Filament of η Carinae, based on the morphology of the
line-emission. Finally, we suggest that the present-day axisymmetric wind of
IRC +10420, combined with its continued blueward evolution, is evidence that
the star is evolving toward the B[e] supergiant phase.Comment: 22 pages, 9 figures, accepted for publication in ApJ. B&W-optimized
version can be downloaded from http://www.cis.rit.edu/~bxdpci/pubs.htm