782 research outputs found

    Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya: Constraining the disk gas mass

    Get PDF
    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TWHya disk, making TWHya the perfect test case in a large survey of disks with Herschel–PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O_I] and [C_(II)] as part of the open-time large program GASPS. We complement this with continuum data and ground-based ^(12)CO 3–2 and ^(13)CO 3–2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O_I] line at 63 μm. The other lines that were observed, [O_I] at 145 μm and [C_(II)] at 157 μm, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [^(12)CO]/[^(13)CO] = 69 suggests a dust mass for grains with radius <1 mm of ~1.9 × 10^(−4) M_⊙ (total solid mass of 3 × 10^(−3) M_⊙) and a gas mass of (0.5–5) ×10^(−3) M_⊙. The gas-to-dust mass may be lower than the standard interstellar value of 100

    A Consistent Model of the Accretion Shock Region in Classical T Tauri Stars

    Get PDF
    We develop a consistent model of the accretion shock region in Classical T Tauri Stars (CTTSs). The initial conditions of the post-shock flow are determined by the irradiated shock precursor and the ionization state is calculated without assuming ionization equilibrium. Comparison with observations of the C IV resonance lines (λλ 1550 Å) for CTTSs indicate that the post-shock emission predicted by the model is too large, for a reasonable range of parameters. If the model is to reproduce the observations, C IV emission from CTTSs has to be dominated by pre-shock emission, for stars with moderate to large accretion rates. For stars with low accretion rates, the observations suggest a comparable contribution between the pre- and post-shock regions. These conclusions are consistent with previous results indicating that the post-shock will be buried under the stellar photosphere for moderate to large accretion rates

    GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics

    Get PDF
    We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ∼250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H_2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II–III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ∼10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ∼10^(-5) M_⊙. Normalising to a distance of 140 pc, 84% of objects with dust masses ≥10^(-5) M_⊙ can be detected in this line in the present survey; 32% of those of mass 10^(-6)–10^(-5) M_⊙, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were ∼50%. For each association in the 5–20 Myr age range, ∼2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ∼18% of stars retain a gas-rich disk of total mass ∼1 M_(Jupiter) for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope

    Ysovar: The First Sensitive, Wide-area, Mid-infrared Photometric Monitoring of the Orion Nebula Cluster

    Get PDF
    We present initial results from time-series imaging at infrared wavelengths of 0.9 deg^2 in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 μm data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen-burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (I_c) and/or near-infrared (JK_s ) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 and 4.5 μm variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009 and highlight our light curves for AA-Tau analogs—YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs

    X-ray Properties of Pre--Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods

    Full text link
    We re-analyze all archival Chandra/ACIS observations of the Orion Nebula Cluster (ONC) to study the X-ray properties of a large sample of pre--main-sequence (PMS) stars with optically determined rotation periods. Our goal is to elucidate the origins of X-rays in PMS stars by seeking out connections between the X-rays and the mechanisms most likely driving their production--rotation and accretion. In our sample X-ray luminosity is significantly correlated with stellar rotation, in the sense of decreasing Lx/Lbol with more rapid rotation, suggesting that these stars are in the "super-saturated" regime of the rotation-activity relationship. However, we also find that stars with optical rotation periods are significantly biased to high Lx. This is not the result of magnitude bias in the optical rotation-period sample but rather to the diminishingly small amplitude of optical variations in stars with low Lx. Evidently, there exists in the ONC a population of stars whose rotation periods are unknown and that possess lower average X-ray luminosities than those of stars with known rotation periods. These stars may sample the linear regime of the rotation-activity relationship. Accretion also manifests itself in X-rays, though in a somewhat counterintuitive fashion: While stars with spectroscopic signatures of accretion show harder X-ray spectra than non-accretors, they show lower X-ray luminosities and no enhancement of X-ray variability. We interpret these findings in terms of a common origin for the X-ray emission observed from both accreting and non-accreting stars, with the X-rays from accreting stars simply being attenuated by magnetospheric accretion columns. This suggests that X-rays from PMS stars have their origins primarily in chromospheres, not accretion.Comment: Accepted by the Astronomical Journal. 43 pages, 16 figure

    The first detection of near-infrared CN bands in active galactic nuclei: signature of star formation

    Get PDF
    We present the first detection of the near-infrared CN absorption band in the nuclear spectra of active galactic nuclei (AGN). This feature is a recent star formation tracer, being particularly strong in carbon stars. The equivalent width of the CN line correlates with that of the CO at 2.3 microns, as expected in stellar populations (SP) with ages between ~ 0.2 and ~ 2 Gyr. The presence of the 1.1 microns CN band in the spectra of the sources is taken as an unambiguous evidence of the presence of young/intermediate SP close to the central source of the AGN. Near-infrared bands can be powerful age indicators for star formation connected to AGN, the understanding of which is crucial in the context of galaxy formation and AGN feedback.Comment: Accepted for publication in The Astrophysical Journal Letters. 4 pages, 3 figure

    Probing stellar accretion with mid-infrared hydrogen lines

    Get PDF
    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional and debris disks) collected from the {\it Spitzer} archive. We focus on the two brighter {H~{\sc i}} lines observed in the {\it Spitzer} spectra, the {H~{\sc i}}(7-6) at 12.37μ\mum and the {H~{\sc i}}(9-7) at 11.32μ\mum. We detect the {H~{\sc i}}(7-6) line in 46 objects, and the {H~{\sc i}}(9-7) in 11. We compare these lines with the other most common gas line detected in {\it Spitzer} spectra, the {[Ne~{\sc iii}]} at 12.81μ\mum. We argue that it is unlikely that the {H~{\sc i}} emission originates from the photoevaporating upper surface layers of the disk, as has been found for the {[Ne~{\sc iii}]} lines toward low-accreting stars. Using the {H~{\sc i}}(9-7)/{H~{\sc i}}(7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010^{10}-1011^{11}~cm3^{-3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the {H~{\sc i}} line luminosity. These two results suggest that the observed mid-IR {H~{\sc i}} lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks.We report for the first time the detection of the {H~{\sc i}}(7-6) line in eight young (< 20~Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the {H~{\sc i}}(7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 1010^{-10}M_{\odot}/yr. We discuss some advantages of extending accretion indicators to longer wavelengths
    corecore