16,643 research outputs found
White primer permits a corrosion-resistant coating of minimum weight
White primer for coating 2219 aluminum alloy supplies a base for a top coating of enamel. A formulation of pigments and vehicle results in a primer with high corrosion resistance and minimum film thickness
Development of corrosion inhibiting white primer final report, 26 jun. - 30 nov. 1964
Corrosion resisting white prime
A Closed-Form Expression for the Gravitational Radiation Rate from Cosmic Strings
We present a new formula for the rate at which cosmic strings lose energy
into gravitational radiation, valid for all piecewise-linear cosmic string
loops. At any time, such a loop is composed of straight segments, each of
which has constant velocity. Any cosmic string loop can be arbitrarily-well
approximated by a piecewise-linear loop with sufficiently large. The
formula is a sum of polynomial and log terms, and is exact when the
effects of gravitational back-reaction are neglected. For a given loop, the
large number of terms makes evaluation ``by hand" impractical, but a computer
or symbolic manipulator yields accurate results. The formula is more accurate
and convenient than previous methods for finding the gravitational radiation
rate, which require numerical evaluation of a four-dimensional integral for
each term in an infinite sum. It also avoids the need to estimate the
contribution from the tail of the infinite sum. The formula has been tested
against all previously published radiation rates for different loop
configurations. In the cases where discrepancies were found, they were due to
errors in the published work. We have isolated and corrected both the analytic
and numerical errors in these cases. To assist future work in this area, a
small catalog of results for some simple loop shapes is provided.Comment: 29 pages TeX, 16 figures and computer C-code available via anonymous
ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-10,
(section 7 has been expanded, two figures added, and minor grammatical
changes made.
Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment
Homologous gene shuffling between DNA promotes genetic diversity and is an
important pathway for DNA repair. For this to occur, homologous genes need to
find and recognize each other. However, despite its central role in homologous
recombination, the mechanism of homology recognition is still an unsolved
puzzle. While specific proteins are known to play a role at later stages of
recombination, an initial coarse grained recognition step has been proposed.
This relies on the sequence dependence of the DNA structural parameters, such
as twist and rise, mediated by intermolecular interactions, in particular
electrostatic ones. In this proposed mechanism, sequences having the same base
pair text, or are homologous, have lower interaction energy than those
sequences with uncorrelated base pair texts; the difference termed the
recognition energy. Here, we probe how the recognition energy changes when one
DNA fragment slides past another, and consider, for the first time, homologous
sequences in antiparallel alignment. This dependence on sliding was termed the
recognition well. We find that there is recognition well for anti-parallel,
homologous DNA tracts, but only a very shallow one, so that their interaction
will differ little from the interaction between two nonhomologous tracts. This
fact may be utilized in single molecule experiments specially targeted to test
the theory. As well as this, we test previous theoretical approximations in
calculating the recognition well for parallel molecules against MC simulations,
and consider more rigorously the optimization of the orientations of the
fragments about their long axes. The more rigorous treatment affects the
recognition energy a little, when the molecules are considered rigid. However
when torsional flexibility of the DNA molecules is introduced, we find
excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures
in main text, 3 figures in supplmental. To be submitted to Journa
Varying c cosmology and Planck value constraints
It has been suggested that by increasing the speed of light during the early
universe various cosmological problems of standard big bang cosmology can be
overcome, without requiring an inflationary phase. However, we find that as the
Planck length and Planck time are then made correspondingly smaller, and
together with the need that the universe should not re-enter a Planck epoch,
the higher models have very limited ability to resolve such problems. For a
constantly decreasing the universe will quickly becomes quantum
gravitationally dominated as time increases: the opposite to standard cosmology
where quantum behaviour is only ascribed to early times.Comment: extended versio
Statistical mechanical description of liquid systems in electric field
We formulate the statistical mechanical description of liquid systems for
both polarizable and polar systems in an electric field in the
-ensemble, which is the pendant to the thermodynamic description in
terms of the free energy at constant potential. The contribution of the
electric field to the configurational integral in
the -ensemble is given in an exact form as a factor in the
integrand of . We calculate the contribution of the
electric field to the Ornstein-Zernike formula for the scattering function in
the -ensemble. As an application we determine the field induced
shift of the critical temperature for polarizable and polar liquids, and show
that the shift is upward for polarizable liquids and downward for polar
liquids.Comment: 6 page
Negative vacuum energy densities and the causal diamond measure
Arguably a major success of the landscape picture is the prediction of a
small, non-zero vacuum energy density. The details of this prediction depends
in part on how the diverging spacetime volume of the multiverse is regulated, a
question that remains unresolved. One proposal, the causal diamond measure, has
demonstrated many phenomenological successes, including predicting a
distribution of positive vacuum energy densities in good agreement with
observation. In the string landscape, however, the vacuum energy density is
expected to take positive and negative values. We find the causal diamond
measure gives a poor fit to observation in such a landscape -- in particular,
99.6% of observers in galaxies seemingly just like ours measure a vacuum energy
density smaller than we do, most of them measuring it to be negative.Comment: 9 pages, 3 figures; v2: minor error fixed (results essentially
unchanged), reference added; v3: published version, includes a few
clarification
- …