71 research outputs found

    Visualising discrete structural transformations in germanium nanowires during ion beam irradiation and subsequent annealing

    Get PDF
    In this article we detail the application of electron microscopy to visualise discrete structural transitions incurring in single crystalline Ge nanowires upon Ga-ion irradiation and subsequent thermal annealing. Sequences of images for nanowires of varying diameters subjected to an incremental increase of the Ga-ion dose were obtained. Intricate transformations dictated by a nanowire's geometry indicate unusual distribution of the cascade recoils in the nanowire volume, in comparison to planar substrates. Following irradiation, the same nanowires were annealed in the TEM and corresponding crystal recovery followed in situ. Visualising the recrystallisation process, we establish that full recovery of defect-free nanowires is difficult to obtain due to defect nucleation and growth. Our findings will have large implications in designing ion beam doping of Ge nanowires for electronic devices but also for other devices that use single crystalline nanostructured Ge materials such as thin membranes, nanoparticles and nanorods

    Solvent vapor annealing of block copolymers in confined topographies: commensurability considerations for nanolithography

    Get PDF
    The directed self-assembly of block copolymer (BCP) materials in topographically patterned substrates (i.e., graphoepitaxy) is a potential methodology for the continued scaling of nanoelectronic device technologies. In this Communication, an unusual feature size variation in BCP nanodomains under confi nement with graphoepitaxially aligned cylinder-forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP is reported. Graphoepitaxy of PS- b -P4VP BCP line patterns (C II ) is accomplished via topography in hydrogen silsequioxane (HSQ) modified substrates and solvent vapor annealing (SVA). Interestingly, reduced domain sizes in features close to the HSQ guiding features are observed. The feature size reduction is evident after inclusion of alumina into the P4VP domains followed by pattern transfer to the silicon substrate. It is suggested that this nanodomain size perturbation is due to solvent swelling effects during SVA. It is proposed that using a commensurability value close to the solvent vapor annealed periodicity will alleviate this issue leading to uniform nanofins

    Selective sidewall wetting of polymer blocks in hydrogen silsesquioxane directed self-assembly of PS-b-PDMS

    Get PDF
    We show the importance of sidewall chemistry for the graphoepitaxial alignment of PS-b-PDMS using prepatterns fabricated by electron beam lithography of hydrogen silsesquioxane (HSQ) and by deep ultraviolet (DUV) lithography on SiO2 thin films. Density multiplication of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) within both prepatterns was achieved by using a room temperature dynamic solvent annealing environment. Selective tuning of PS and PDMS wetting on the HSQ template sidewalls was also achieved through careful functionalization of the template and substrate surface using either brush or a self-assembled trimethylsilyl monolayer. PDMS selectively wets HSQ sidewalls treated with a brush layer of PDMS, whiereas PS is found to selectively wet HSQ sidewalls treated with hexamethyldisilazane (HMDS) to produce a trimethylsilyl-terminated surface. The etch resistance of the aligned polymer was also evaluated to understand the implications of using block copolymer patterns which have high etch resistance, self-forming (PDMS) wetting layers at both interfaces. The results outlined in this work may have direct applications in nanolithography for continued device scaling toward the end-of-roadmap era

    Fabrication of MoS2 nanowire arrays and layered structures via the self-assembly of block copolymers

    Get PDF
    The electronics industry is beginning to show interest in 2D molybdenum disulfide (2D‐MoS2) as a potential device material due to its low band gap and high mobility. However, current methods for its synthesis are not “fab” friendly and require harsh environments and processes. Here, a novel method to prepare MoS2 nanowire arrays and layered structures via self‐assembly of a block copolymer system is reported. Well‐controlled films of microphase separated line‐space nanopatterns have been achieved by solvent annealing process. The self‐assembled films are used as “templates” for the generation of nonstoichometric molybdenum oxide by in situ inclusion technique following UV/Ozone treatment. Well‐ordered array of MoS2 and a layered structure are then prepared by chemical vapor deposition using sulfur powder at lower temperature. The surface morphology, crystal structure, and phases are examined by different microscopic and spectroscopic techniques. This strategy can be extended to several other 2D materials systems and open the pathway toward better optoelectronic and nanoelectromechanical systems

    The role of oversight in foreign-national only prisons: counteracting the disapplication of rehabilitation

    Get PDF
    In several European countries, prisons have been created solely to house foreign national prisoners without leave to remain. Contrary to contemporary international human rights law and standards on prison management, there seems to be a trend towards the disapplication of rehabilitative theory and practice for this group of prisoners. In particular, they do not seem to receive the same preparation for release and reintegrative support as other prisoners. This paper explores the role international standards and oversight bodies have in upholding rehabilitation as the foundational objective for prison management in foreign national only prisons. It outlines the changes to the prison estate, policy and regime that have resulted from the increasing focus on removal within both the prison and penal process. The consequences of the disapplication of rehabilitation for prisons, prison officers, prisoners and society itself are analysed before the paper moves to examine the role oversight bodies could and should play in the protection of the rights of this vulnerable category of prisoner and the primacy that should be accorded to rehabilitative theory and practice. It concludes by asking whether such standards and oversight have inverted the panopticon by placing the trigger for international reactions in the hands of prisoners and NGOs

    False‐negative detections from environmental DNA collected in the presence of large numbers of killer whales (Orcinus orca)

    Get PDF
    While environmental DNA (eDNA) is becoming increasingly established in biodiversity monitoring of freshwater ecosystems, the use of eDNA surveys in the marine environment is still in its infancy. Here, we use two approaches: targeted quantitative PCR (qPCR) and whole-genome enrichment capture followed by shotgun sequencing in an effort to amplify killer whale DNA from seawater samples. Samples were collected in close proximity to killer whales in inshore and offshore waters, in varying sea conditions and from the surface and subsurface but none returned strongly positive detections of killer whale eDNA. We validated our laboratory methodologies by successfully amplifying a dilution series of a positive control of killer whale DNA. Furthermore, DNA of Atlantic mackerel, which was present at all sites during sampling, was successfully amplified from the same seawater samples, with positive detections found in ten of the eighteen eDNA extracts. We discuss the various eDNA collection and amplification methodologies used and the abiotic and biotic factors that influence eDNA detection. We discuss possible explanations for the lack of positive killer whale detections, potential pitfalls, and the apparent limitations of eDNA for genetic research on cetaceans, particularly in offshore regions

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    Epitaxial post-implant recrystallization in germanium nanowires

    Get PDF
    As transistor dimensions continue to diminish, techniques for fabrication need to be adapted. In particular, crystal recovery post ion implantation is required due to destructive ion bombardment inducing crystal damage including amorphization. Here, we report a study on the post-implant recrystallization in germanium (Ge) nanowires (NWs) following gallium (Ga) ion doping. In this work a variation of NW diameters and orientations were irradiated and annealed in situ to investigate the mechanism of recrystallization. An added complication of misorientation of crystal grains increases the complexity of crystal recovery for suspended NWs. We show that when the misorientation is prevented, by leaving a crystal link between two seeds and providing a rigid support, recrystallization occurs primarily via solid phase epitaxial growth (SPEG). Finally, we demonstrate that top-down fabricated Ge NWs on insulator can be recovered with no extended defects. This work highlights both experimentally and through molecular dynamic simulations the importance of engineering crystal recovery in Ge NWs which may have potential for next-generation complementary metal-oxide semiconductor (CMOS) devices
    corecore